3e28db2362
In the public comments to draft version of NIST Special Publication 800-208, ETSI TC CYBER WG QSC identified a multi-target attack against the method of pseudorandom key generation used in this referrence implementation. ETSI TC CYBER WG QSC suggested using the pseudorandom key generation method from SPHINCS+, however, there is still a multi-user attack against that key generation method. This commit revises the pseudorandom key generation method by using the method from SPINCS+, but adding SEED as an input in order to protect against multi-user attacks. Since prf() only accepts 32-byte inputs, the new key generation method uses a new PRF. The resulting key generation method is sk[i] = prf_keygen(sk_seed, pub_seed || adrs).
215 lines
7.3 KiB
C
215 lines
7.3 KiB
C
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <stdint.h>
|
|
|
|
#include "hash.h"
|
|
#include "hash_address.h"
|
|
#include "params.h"
|
|
#include "wots.h"
|
|
#include "utils.h"
|
|
#include "xmss_commons.h"
|
|
|
|
/**
|
|
* Computes a leaf node from a WOTS public key using an L-tree.
|
|
* Note that this destroys the used WOTS public key.
|
|
*/
|
|
static void l_tree(const xmss_params *params,
|
|
unsigned char *leaf, unsigned char *wots_pk,
|
|
const unsigned char *pub_seed, uint32_t addr[8])
|
|
{
|
|
unsigned int l = params->wots_len;
|
|
unsigned int parent_nodes;
|
|
uint32_t i;
|
|
uint32_t height = 0;
|
|
|
|
set_tree_height(addr, height);
|
|
|
|
while (l > 1) {
|
|
parent_nodes = l >> 1;
|
|
for (i = 0; i < parent_nodes; i++) {
|
|
set_tree_index(addr, i);
|
|
/* Hashes the nodes at (i*2)*params->n and (i*2)*params->n + 1 */
|
|
thash_h(params, wots_pk + i*params->n,
|
|
wots_pk + (i*2)*params->n, pub_seed, addr);
|
|
}
|
|
/* If the row contained an odd number of nodes, the last node was not
|
|
hashed. Instead, we pull it up to the next layer. */
|
|
if (l & 1) {
|
|
memcpy(wots_pk + (l >> 1)*params->n,
|
|
wots_pk + (l - 1)*params->n, params->n);
|
|
l = (l >> 1) + 1;
|
|
}
|
|
else {
|
|
l = l >> 1;
|
|
}
|
|
height++;
|
|
set_tree_height(addr, height);
|
|
}
|
|
memcpy(leaf, wots_pk, params->n);
|
|
}
|
|
|
|
/**
|
|
* Computes a root node given a leaf and an auth path
|
|
*/
|
|
static void compute_root(const xmss_params *params, unsigned char *root,
|
|
const unsigned char *leaf, unsigned long leafidx,
|
|
const unsigned char *auth_path,
|
|
const unsigned char *pub_seed, uint32_t addr[8])
|
|
{
|
|
uint32_t i;
|
|
unsigned char buffer[2*params->n];
|
|
|
|
/* If leafidx is odd (last bit = 1), current path element is a right child
|
|
and auth_path has to go left. Otherwise it is the other way around. */
|
|
if (leafidx & 1) {
|
|
memcpy(buffer + params->n, leaf, params->n);
|
|
memcpy(buffer, auth_path, params->n);
|
|
}
|
|
else {
|
|
memcpy(buffer, leaf, params->n);
|
|
memcpy(buffer + params->n, auth_path, params->n);
|
|
}
|
|
auth_path += params->n;
|
|
|
|
for (i = 0; i < params->tree_height - 1; i++) {
|
|
set_tree_height(addr, i);
|
|
leafidx >>= 1;
|
|
set_tree_index(addr, leafidx);
|
|
|
|
/* Pick the right or left neighbor, depending on parity of the node. */
|
|
if (leafidx & 1) {
|
|
thash_h(params, buffer + params->n, buffer, pub_seed, addr);
|
|
memcpy(buffer, auth_path, params->n);
|
|
}
|
|
else {
|
|
thash_h(params, buffer, buffer, pub_seed, addr);
|
|
memcpy(buffer + params->n, auth_path, params->n);
|
|
}
|
|
auth_path += params->n;
|
|
}
|
|
|
|
/* The last iteration is exceptional; we do not copy an auth_path node. */
|
|
set_tree_height(addr, params->tree_height - 1);
|
|
leafidx >>= 1;
|
|
set_tree_index(addr, leafidx);
|
|
thash_h(params, root, buffer, pub_seed, addr);
|
|
}
|
|
|
|
|
|
/**
|
|
* Computes the leaf at a given address. First generates the WOTS key pair,
|
|
* then computes leaf using l_tree. As this happens position independent, we
|
|
* only require that addr encodes the right ltree-address.
|
|
*/
|
|
void gen_leaf_wots(const xmss_params *params, unsigned char *leaf,
|
|
const unsigned char *sk_seed, const unsigned char *pub_seed,
|
|
uint32_t ltree_addr[8], uint32_t ots_addr[8])
|
|
{
|
|
unsigned char pk[params->wots_sig_bytes];
|
|
|
|
wots_pkgen(params, pk, sk_seed, pub_seed, ots_addr);
|
|
|
|
l_tree(params, leaf, pk, pub_seed, ltree_addr);
|
|
}
|
|
|
|
|
|
/**
|
|
* Verifies a given message signature pair under a given public key.
|
|
* Note that this assumes a pk without an OID, i.e. [root || PUB_SEED]
|
|
*/
|
|
int xmss_core_sign_open(const xmss_params *params,
|
|
unsigned char *m, unsigned long long *mlen,
|
|
const unsigned char *sm, unsigned long long smlen,
|
|
const unsigned char *pk)
|
|
{
|
|
/* XMSS signatures are fundamentally an instance of XMSSMT signatures.
|
|
For d=1, as is the case with XMSS, some of the calls in the XMSSMT
|
|
routine become vacuous (i.e. the loop only iterates once, and address
|
|
management can be simplified a bit).*/
|
|
return xmssmt_core_sign_open(params, m, mlen, sm, smlen, pk);
|
|
}
|
|
|
|
/**
|
|
* Verifies a given message signature pair under a given public key.
|
|
* Note that this assumes a pk without an OID, i.e. [root || PUB_SEED]
|
|
*/
|
|
int xmssmt_core_sign_open(const xmss_params *params,
|
|
unsigned char *m, unsigned long long *mlen,
|
|
const unsigned char *sm, unsigned long long smlen,
|
|
const unsigned char *pk)
|
|
{
|
|
const unsigned char *pub_root = pk;
|
|
const unsigned char *pub_seed = pk + params->n;
|
|
unsigned char wots_pk[params->wots_sig_bytes];
|
|
unsigned char leaf[params->n];
|
|
unsigned char root[params->n];
|
|
unsigned char *mhash = root;
|
|
unsigned long long idx = 0;
|
|
unsigned int i;
|
|
uint32_t idx_leaf;
|
|
|
|
uint32_t ots_addr[8] = {0};
|
|
uint32_t ltree_addr[8] = {0};
|
|
uint32_t node_addr[8] = {0};
|
|
|
|
set_type(ots_addr, XMSS_ADDR_TYPE_OTS);
|
|
set_type(ltree_addr, XMSS_ADDR_TYPE_LTREE);
|
|
set_type(node_addr, XMSS_ADDR_TYPE_HASHTREE);
|
|
|
|
*mlen = smlen - params->sig_bytes;
|
|
|
|
/* Convert the index bytes from the signature to an integer. */
|
|
idx = bytes_to_ull(sm, params->index_bytes);
|
|
|
|
/* Put the message all the way at the end of the m buffer, so that we can
|
|
* prepend the required other inputs for the hash function. */
|
|
memcpy(m + params->sig_bytes, sm + params->sig_bytes, *mlen);
|
|
|
|
/* Compute the message hash. */
|
|
hash_message(params, mhash, sm + params->index_bytes, pk, idx,
|
|
m + params->sig_bytes - 4*params->n, *mlen);
|
|
sm += params->index_bytes + params->n;
|
|
|
|
/* For each subtree.. */
|
|
for (i = 0; i < params->d; i++) {
|
|
idx_leaf = (idx & ((1 << params->tree_height)-1));
|
|
idx = idx >> params->tree_height;
|
|
|
|
set_layer_addr(ots_addr, i);
|
|
set_layer_addr(ltree_addr, i);
|
|
set_layer_addr(node_addr, i);
|
|
|
|
set_tree_addr(ltree_addr, idx);
|
|
set_tree_addr(ots_addr, idx);
|
|
set_tree_addr(node_addr, idx);
|
|
|
|
/* The WOTS public key is only correct if the signature was correct. */
|
|
set_ots_addr(ots_addr, idx_leaf);
|
|
/* Initially, root = mhash, but on subsequent iterations it is the root
|
|
of the subtree below the currently processed subtree. */
|
|
wots_pk_from_sig(params, wots_pk, sm, root, pub_seed, ots_addr);
|
|
sm += params->wots_sig_bytes;
|
|
|
|
/* Compute the leaf node using the WOTS public key. */
|
|
set_ltree_addr(ltree_addr, idx_leaf);
|
|
l_tree(params, leaf, wots_pk, pub_seed, ltree_addr);
|
|
|
|
/* Compute the root node of this subtree. */
|
|
compute_root(params, root, leaf, idx_leaf, sm, pub_seed, node_addr);
|
|
sm += params->tree_height*params->n;
|
|
}
|
|
|
|
/* Check if the root node equals the root node in the public key. */
|
|
if (memcmp(root, pub_root, params->n)) {
|
|
/* If not, zero the message */
|
|
memset(m, 0, *mlen);
|
|
*mlen = 0;
|
|
return -1;
|
|
}
|
|
|
|
/* If verification was successful, copy the message from the signature. */
|
|
memcpy(m, sm, *mlen);
|
|
|
|
return 0;
|
|
}
|