3e28db2362
In the public comments to draft version of NIST Special Publication 800-208, ETSI TC CYBER WG QSC identified a multi-target attack against the method of pseudorandom key generation used in this referrence implementation. ETSI TC CYBER WG QSC suggested using the pseudorandom key generation method from SPHINCS+, however, there is still a multi-user attack against that key generation method. This commit revises the pseudorandom key generation method by using the method from SPINCS+, but adding SEED as an input in order to protect against multi-user attacks. Since prf() only accepts 32-byte inputs, the new key generation method uses a new PRF. The resulting key generation method is sk[i] = prf_keygen(sk_seed, pub_seed || adrs).
942 lines
33 KiB
C
942 lines
33 KiB
C
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <stdint.h>
|
|
|
|
#include "hash.h"
|
|
#include "hash_address.h"
|
|
#include "params.h"
|
|
#include "randombytes.h"
|
|
#include "wots.h"
|
|
#include "utils.h"
|
|
#include "xmss_commons.h"
|
|
#include "xmss_core.h"
|
|
|
|
typedef struct{
|
|
unsigned char h;
|
|
unsigned long next_idx;
|
|
unsigned char stackusage;
|
|
unsigned char completed;
|
|
unsigned char *node;
|
|
} treehash_inst;
|
|
|
|
typedef struct {
|
|
unsigned char *stack;
|
|
unsigned int stackoffset;
|
|
unsigned char *stacklevels;
|
|
unsigned char *auth;
|
|
unsigned char *keep;
|
|
treehash_inst *treehash;
|
|
unsigned char *retain;
|
|
unsigned int next_leaf;
|
|
} bds_state;
|
|
|
|
/* These serialization functions provide a transition between the current
|
|
way of storing the state in an exposed struct, and storing it as part of the
|
|
byte array that is the secret key.
|
|
They will probably be refactored in a non-backwards-compatible way, soon. */
|
|
|
|
static void xmssmt_serialize_state(const xmss_params *params,
|
|
unsigned char *sk, bds_state *states)
|
|
{
|
|
unsigned int i, j;
|
|
|
|
/* Skip past the 'regular' sk */
|
|
sk += params->index_bytes + 4*params->n;
|
|
|
|
for (i = 0; i < 2*params->d - 1; i++) {
|
|
sk += (params->tree_height + 1) * params->n; /* stack */
|
|
|
|
ull_to_bytes(sk, 4, states[i].stackoffset);
|
|
sk += 4;
|
|
|
|
sk += params->tree_height + 1; /* stacklevels */
|
|
sk += params->tree_height * params->n; /* auth */
|
|
sk += (params->tree_height >> 1) * params->n; /* keep */
|
|
|
|
for (j = 0; j < params->tree_height - params->bds_k; j++) {
|
|
ull_to_bytes(sk, 1, states[i].treehash[j].h);
|
|
sk += 1;
|
|
|
|
ull_to_bytes(sk, 4, states[i].treehash[j].next_idx);
|
|
sk += 4;
|
|
|
|
ull_to_bytes(sk, 1, states[i].treehash[j].stackusage);
|
|
sk += 1;
|
|
|
|
ull_to_bytes(sk, 1, states[i].treehash[j].completed);
|
|
sk += 1;
|
|
|
|
sk += params->n; /* node */
|
|
}
|
|
|
|
/* retain */
|
|
sk += ((1 << params->bds_k) - params->bds_k - 1) * params->n;
|
|
|
|
ull_to_bytes(sk, 4, states[i].next_leaf);
|
|
sk += 4;
|
|
}
|
|
}
|
|
|
|
static void xmssmt_deserialize_state(const xmss_params *params,
|
|
bds_state *states,
|
|
unsigned char **wots_sigs,
|
|
unsigned char *sk)
|
|
{
|
|
unsigned int i, j;
|
|
|
|
/* Skip past the 'regular' sk */
|
|
sk += params->index_bytes + 4*params->n;
|
|
|
|
// TODO These data sizes follow from the (former) test xmss_core_fast.c
|
|
// TODO They should be reconsidered / motivated more explicitly
|
|
|
|
for (i = 0; i < 2*params->d - 1; i++) {
|
|
states[i].stack = sk;
|
|
sk += (params->tree_height + 1) * params->n;
|
|
|
|
states[i].stackoffset = bytes_to_ull(sk, 4);
|
|
sk += 4;
|
|
|
|
states[i].stacklevels = sk;
|
|
sk += params->tree_height + 1;
|
|
|
|
states[i].auth = sk;
|
|
sk += params->tree_height * params->n;
|
|
|
|
states[i].keep = sk;
|
|
sk += (params->tree_height >> 1) * params->n;
|
|
|
|
for (j = 0; j < params->tree_height - params->bds_k; j++) {
|
|
states[i].treehash[j].h = bytes_to_ull(sk, 1);
|
|
sk += 1;
|
|
|
|
states[i].treehash[j].next_idx = bytes_to_ull(sk, 4);
|
|
sk += 4;
|
|
|
|
states[i].treehash[j].stackusage = bytes_to_ull(sk, 1);
|
|
sk += 1;
|
|
|
|
states[i].treehash[j].completed = bytes_to_ull(sk, 1);
|
|
sk += 1;
|
|
|
|
states[i].treehash[j].node = sk;
|
|
sk += params->n;
|
|
}
|
|
|
|
states[i].retain = sk;
|
|
sk += ((1 << params->bds_k) - params->bds_k - 1) * params->n;
|
|
|
|
states[i].next_leaf = bytes_to_ull(sk, 4);
|
|
sk += 4;
|
|
}
|
|
|
|
if (params->d > 1) {
|
|
*wots_sigs = sk;
|
|
}
|
|
}
|
|
|
|
static void xmss_serialize_state(const xmss_params *params,
|
|
unsigned char *sk, bds_state *state)
|
|
{
|
|
xmssmt_serialize_state(params, sk, state);
|
|
}
|
|
|
|
static void xmss_deserialize_state(const xmss_params *params,
|
|
bds_state *state, unsigned char *sk)
|
|
{
|
|
xmssmt_deserialize_state(params, state, NULL, sk);
|
|
}
|
|
|
|
static void memswap(void *a, void *b, void *t, unsigned long long len)
|
|
{
|
|
memcpy(t, a, len);
|
|
memcpy(a, b, len);
|
|
memcpy(b, t, len);
|
|
}
|
|
|
|
/**
|
|
* Swaps the content of two bds_state objects, swapping actual memory rather
|
|
* than pointers.
|
|
* As we're mapping memory chunks in the secret key to bds state objects,
|
|
* it is now necessary to make swaps 'real swaps'. This could be done in the
|
|
* serialization function as well, but that causes more overhead
|
|
*/
|
|
// TODO this should not be necessary if we keep better track of the states
|
|
static void deep_state_swap(const xmss_params *params,
|
|
bds_state *a, bds_state *b)
|
|
{
|
|
// TODO this is extremely ugly and should be refactored
|
|
// TODO right now, this ensures that both 'stack' and 'retain' fit
|
|
unsigned char t[
|
|
((params->tree_height + 1) > ((1 << params->bds_k) - params->bds_k - 1)
|
|
? (params->tree_height + 1)
|
|
: ((1 << params->bds_k) - params->bds_k - 1))
|
|
* params->n];
|
|
unsigned int i;
|
|
|
|
memswap(a->stack, b->stack, t, (params->tree_height + 1) * params->n);
|
|
memswap(&a->stackoffset, &b->stackoffset, t, sizeof(a->stackoffset));
|
|
memswap(a->stacklevels, b->stacklevels, t, params->tree_height + 1);
|
|
memswap(a->auth, b->auth, t, params->tree_height * params->n);
|
|
memswap(a->keep, b->keep, t, (params->tree_height >> 1) * params->n);
|
|
|
|
for (i = 0; i < params->tree_height - params->bds_k; i++) {
|
|
memswap(&a->treehash[i].h, &b->treehash[i].h, t, sizeof(a->treehash[i].h));
|
|
memswap(&a->treehash[i].next_idx, &b->treehash[i].next_idx, t, sizeof(a->treehash[i].next_idx));
|
|
memswap(&a->treehash[i].stackusage, &b->treehash[i].stackusage, t, sizeof(a->treehash[i].stackusage));
|
|
memswap(&a->treehash[i].completed, &b->treehash[i].completed, t, sizeof(a->treehash[i].completed));
|
|
memswap(a->treehash[i].node, b->treehash[i].node, t, params->n);
|
|
}
|
|
|
|
memswap(a->retain, b->retain, t, ((1 << params->bds_k) - params->bds_k - 1) * params->n);
|
|
memswap(&a->next_leaf, &b->next_leaf, t, sizeof(a->next_leaf));
|
|
}
|
|
|
|
static int treehash_minheight_on_stack(const xmss_params *params,
|
|
bds_state *state,
|
|
const treehash_inst *treehash)
|
|
{
|
|
unsigned int r = params->tree_height, i;
|
|
|
|
for (i = 0; i < treehash->stackusage; i++) {
|
|
if (state->stacklevels[state->stackoffset - i - 1] < r) {
|
|
r = state->stacklevels[state->stackoffset - i - 1];
|
|
}
|
|
}
|
|
return r;
|
|
}
|
|
|
|
/**
|
|
* Merkle's TreeHash algorithm. The address only needs to initialize the first 78 bits of addr. Everything else will be set by treehash.
|
|
* Currently only used for key generation.
|
|
*
|
|
*/
|
|
static void treehash_init(const xmss_params *params,
|
|
unsigned char *node, int height, int index,
|
|
bds_state *state, const unsigned char *sk_seed,
|
|
const unsigned char *pub_seed, const uint32_t addr[8])
|
|
{
|
|
unsigned int idx = index;
|
|
// use three different addresses because at this point we use all three formats in parallel
|
|
uint32_t ots_addr[8] = {0};
|
|
uint32_t ltree_addr[8] = {0};
|
|
uint32_t node_addr[8] = {0};
|
|
// only copy layer and tree address parts
|
|
copy_subtree_addr(ots_addr, addr);
|
|
// type = ots
|
|
set_type(ots_addr, 0);
|
|
copy_subtree_addr(ltree_addr, addr);
|
|
set_type(ltree_addr, 1);
|
|
copy_subtree_addr(node_addr, addr);
|
|
set_type(node_addr, 2);
|
|
|
|
uint32_t lastnode, i;
|
|
unsigned char stack[(height+1)*params->n];
|
|
unsigned int stacklevels[height+1];
|
|
unsigned int stackoffset=0;
|
|
unsigned int nodeh;
|
|
|
|
lastnode = idx+(1<<height);
|
|
|
|
for (i = 0; i < params->tree_height-params->bds_k; i++) {
|
|
state->treehash[i].h = i;
|
|
state->treehash[i].completed = 1;
|
|
state->treehash[i].stackusage = 0;
|
|
}
|
|
|
|
i = 0;
|
|
for (; idx < lastnode; idx++) {
|
|
set_ltree_addr(ltree_addr, idx);
|
|
set_ots_addr(ots_addr, idx);
|
|
gen_leaf_wots(params, stack+stackoffset*params->n, sk_seed, pub_seed, ltree_addr, ots_addr);
|
|
stacklevels[stackoffset] = 0;
|
|
stackoffset++;
|
|
if (params->tree_height - params->bds_k > 0 && i == 3) {
|
|
memcpy(state->treehash[0].node, stack+stackoffset*params->n, params->n);
|
|
}
|
|
while (stackoffset>1 && stacklevels[stackoffset-1] == stacklevels[stackoffset-2]) {
|
|
nodeh = stacklevels[stackoffset-1];
|
|
if (i >> nodeh == 1) {
|
|
memcpy(state->auth + nodeh*params->n, stack+(stackoffset-1)*params->n, params->n);
|
|
}
|
|
else {
|
|
if (nodeh < params->tree_height - params->bds_k && i >> nodeh == 3) {
|
|
memcpy(state->treehash[nodeh].node, stack+(stackoffset-1)*params->n, params->n);
|
|
}
|
|
else if (nodeh >= params->tree_height - params->bds_k) {
|
|
memcpy(state->retain + ((1 << (params->tree_height - 1 - nodeh)) + nodeh - params->tree_height + (((i >> nodeh) - 3) >> 1)) * params->n, stack+(stackoffset-1)*params->n, params->n);
|
|
}
|
|
}
|
|
set_tree_height(node_addr, stacklevels[stackoffset-1]);
|
|
set_tree_index(node_addr, (idx >> (stacklevels[stackoffset-1]+1)));
|
|
thash_h(params, stack+(stackoffset-2)*params->n, stack+(stackoffset-2)*params->n, pub_seed, node_addr);
|
|
stacklevels[stackoffset-2]++;
|
|
stackoffset--;
|
|
}
|
|
i++;
|
|
}
|
|
|
|
for (i = 0; i < params->n; i++) {
|
|
node[i] = stack[i];
|
|
}
|
|
}
|
|
|
|
static void treehash_update(const xmss_params *params,
|
|
treehash_inst *treehash, bds_state *state,
|
|
const unsigned char *sk_seed,
|
|
const unsigned char *pub_seed,
|
|
const uint32_t addr[8])
|
|
{
|
|
uint32_t ots_addr[8] = {0};
|
|
uint32_t ltree_addr[8] = {0};
|
|
uint32_t node_addr[8] = {0};
|
|
// only copy layer and tree address parts
|
|
copy_subtree_addr(ots_addr, addr);
|
|
// type = ots
|
|
set_type(ots_addr, 0);
|
|
copy_subtree_addr(ltree_addr, addr);
|
|
set_type(ltree_addr, 1);
|
|
copy_subtree_addr(node_addr, addr);
|
|
set_type(node_addr, 2);
|
|
|
|
set_ltree_addr(ltree_addr, treehash->next_idx);
|
|
set_ots_addr(ots_addr, treehash->next_idx);
|
|
|
|
unsigned char nodebuffer[2 * params->n];
|
|
unsigned int nodeheight = 0;
|
|
gen_leaf_wots(params, nodebuffer, sk_seed, pub_seed, ltree_addr, ots_addr);
|
|
while (treehash->stackusage > 0 && state->stacklevels[state->stackoffset-1] == nodeheight) {
|
|
memcpy(nodebuffer + params->n, nodebuffer, params->n);
|
|
memcpy(nodebuffer, state->stack + (state->stackoffset-1)*params->n, params->n);
|
|
set_tree_height(node_addr, nodeheight);
|
|
set_tree_index(node_addr, (treehash->next_idx >> (nodeheight+1)));
|
|
thash_h(params, nodebuffer, nodebuffer, pub_seed, node_addr);
|
|
nodeheight++;
|
|
treehash->stackusage--;
|
|
state->stackoffset--;
|
|
}
|
|
if (nodeheight == treehash->h) { // this also implies stackusage == 0
|
|
memcpy(treehash->node, nodebuffer, params->n);
|
|
treehash->completed = 1;
|
|
}
|
|
else {
|
|
memcpy(state->stack + state->stackoffset*params->n, nodebuffer, params->n);
|
|
treehash->stackusage++;
|
|
state->stacklevels[state->stackoffset] = nodeheight;
|
|
state->stackoffset++;
|
|
treehash->next_idx++;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Performs treehash updates on the instance that needs it the most.
|
|
* Returns the updated number of available updates.
|
|
**/
|
|
static char bds_treehash_update(const xmss_params *params,
|
|
bds_state *state, unsigned int updates,
|
|
const unsigned char *sk_seed,
|
|
unsigned char *pub_seed,
|
|
const uint32_t addr[8])
|
|
{
|
|
uint32_t i, j;
|
|
unsigned int level, l_min, low;
|
|
unsigned int used = 0;
|
|
|
|
for (j = 0; j < updates; j++) {
|
|
l_min = params->tree_height;
|
|
level = params->tree_height - params->bds_k;
|
|
for (i = 0; i < params->tree_height - params->bds_k; i++) {
|
|
if (state->treehash[i].completed) {
|
|
low = params->tree_height;
|
|
}
|
|
else if (state->treehash[i].stackusage == 0) {
|
|
low = i;
|
|
}
|
|
else {
|
|
low = treehash_minheight_on_stack(params, state, &(state->treehash[i]));
|
|
}
|
|
if (low < l_min) {
|
|
level = i;
|
|
l_min = low;
|
|
}
|
|
}
|
|
if (level == params->tree_height - params->bds_k) {
|
|
break;
|
|
}
|
|
treehash_update(params, &(state->treehash[level]), state, sk_seed, pub_seed, addr);
|
|
used++;
|
|
}
|
|
return updates - used;
|
|
}
|
|
|
|
/**
|
|
* Updates the state (typically NEXT_i) by adding a leaf and updating the stack
|
|
* Returns -1 if all leaf nodes have already been processed
|
|
**/
|
|
static char bds_state_update(const xmss_params *params,
|
|
bds_state *state, const unsigned char *sk_seed,
|
|
const unsigned char *pub_seed,
|
|
const uint32_t addr[8])
|
|
{
|
|
uint32_t ltree_addr[8] = {0};
|
|
uint32_t node_addr[8] = {0};
|
|
uint32_t ots_addr[8] = {0};
|
|
|
|
unsigned int nodeh;
|
|
int idx = state->next_leaf;
|
|
if (idx == 1 << params->tree_height) {
|
|
return -1;
|
|
}
|
|
|
|
// only copy layer and tree address parts
|
|
copy_subtree_addr(ots_addr, addr);
|
|
// type = ots
|
|
set_type(ots_addr, 0);
|
|
copy_subtree_addr(ltree_addr, addr);
|
|
set_type(ltree_addr, 1);
|
|
copy_subtree_addr(node_addr, addr);
|
|
set_type(node_addr, 2);
|
|
|
|
set_ots_addr(ots_addr, idx);
|
|
set_ltree_addr(ltree_addr, idx);
|
|
|
|
gen_leaf_wots(params, state->stack+state->stackoffset*params->n, sk_seed, pub_seed, ltree_addr, ots_addr);
|
|
|
|
state->stacklevels[state->stackoffset] = 0;
|
|
state->stackoffset++;
|
|
if (params->tree_height - params->bds_k > 0 && idx == 3) {
|
|
memcpy(state->treehash[0].node, state->stack+state->stackoffset*params->n, params->n);
|
|
}
|
|
while (state->stackoffset>1 && state->stacklevels[state->stackoffset-1] == state->stacklevels[state->stackoffset-2]) {
|
|
nodeh = state->stacklevels[state->stackoffset-1];
|
|
if (idx >> nodeh == 1) {
|
|
memcpy(state->auth + nodeh*params->n, state->stack+(state->stackoffset-1)*params->n, params->n);
|
|
}
|
|
else {
|
|
if (nodeh < params->tree_height - params->bds_k && idx >> nodeh == 3) {
|
|
memcpy(state->treehash[nodeh].node, state->stack+(state->stackoffset-1)*params->n, params->n);
|
|
}
|
|
else if (nodeh >= params->tree_height - params->bds_k) {
|
|
memcpy(state->retain + ((1 << (params->tree_height - 1 - nodeh)) + nodeh - params->tree_height + (((idx >> nodeh) - 3) >> 1)) * params->n, state->stack+(state->stackoffset-1)*params->n, params->n);
|
|
}
|
|
}
|
|
set_tree_height(node_addr, state->stacklevels[state->stackoffset-1]);
|
|
set_tree_index(node_addr, (idx >> (state->stacklevels[state->stackoffset-1]+1)));
|
|
thash_h(params, state->stack+(state->stackoffset-2)*params->n, state->stack+(state->stackoffset-2)*params->n, pub_seed, node_addr);
|
|
|
|
state->stacklevels[state->stackoffset-2]++;
|
|
state->stackoffset--;
|
|
}
|
|
state->next_leaf++;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Returns the auth path for node leaf_idx and computes the auth path for the
|
|
* next leaf node, using the algorithm described by Buchmann, Dahmen and Szydlo
|
|
* in "Post Quantum Cryptography", Springer 2009.
|
|
*/
|
|
static void bds_round(const xmss_params *params,
|
|
bds_state *state, const unsigned long leaf_idx,
|
|
const unsigned char *sk_seed,
|
|
const unsigned char *pub_seed, uint32_t addr[8])
|
|
{
|
|
unsigned int i;
|
|
unsigned int tau = params->tree_height;
|
|
unsigned int startidx;
|
|
unsigned int offset, rowidx;
|
|
unsigned char buf[2 * params->n];
|
|
|
|
uint32_t ots_addr[8] = {0};
|
|
uint32_t ltree_addr[8] = {0};
|
|
uint32_t node_addr[8] = {0};
|
|
|
|
// only copy layer and tree address parts
|
|
copy_subtree_addr(ots_addr, addr);
|
|
// type = ots
|
|
set_type(ots_addr, 0);
|
|
copy_subtree_addr(ltree_addr, addr);
|
|
set_type(ltree_addr, 1);
|
|
copy_subtree_addr(node_addr, addr);
|
|
set_type(node_addr, 2);
|
|
|
|
for (i = 0; i < params->tree_height; i++) {
|
|
if (! ((leaf_idx >> i) & 1)) {
|
|
tau = i;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (tau > 0) {
|
|
memcpy(buf, state->auth + (tau-1) * params->n, params->n);
|
|
// we need to do this before refreshing state->keep to prevent overwriting
|
|
memcpy(buf + params->n, state->keep + ((tau-1) >> 1) * params->n, params->n);
|
|
}
|
|
if (!((leaf_idx >> (tau + 1)) & 1) && (tau < params->tree_height - 1)) {
|
|
memcpy(state->keep + (tau >> 1)*params->n, state->auth + tau*params->n, params->n);
|
|
}
|
|
if (tau == 0) {
|
|
set_ltree_addr(ltree_addr, leaf_idx);
|
|
set_ots_addr(ots_addr, leaf_idx);
|
|
gen_leaf_wots(params, state->auth, sk_seed, pub_seed, ltree_addr, ots_addr);
|
|
}
|
|
else {
|
|
set_tree_height(node_addr, (tau-1));
|
|
set_tree_index(node_addr, leaf_idx >> tau);
|
|
thash_h(params, state->auth + tau * params->n, buf, pub_seed, node_addr);
|
|
for (i = 0; i < tau; i++) {
|
|
if (i < params->tree_height - params->bds_k) {
|
|
memcpy(state->auth + i * params->n, state->treehash[i].node, params->n);
|
|
}
|
|
else {
|
|
offset = (1 << (params->tree_height - 1 - i)) + i - params->tree_height;
|
|
rowidx = ((leaf_idx >> i) - 1) >> 1;
|
|
memcpy(state->auth + i * params->n, state->retain + (offset + rowidx) * params->n, params->n);
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < ((tau < params->tree_height - params->bds_k) ? tau : (params->tree_height - params->bds_k)); i++) {
|
|
startidx = leaf_idx + 1 + 3 * (1 << i);
|
|
if (startidx < 1U << params->tree_height) {
|
|
state->treehash[i].h = i;
|
|
state->treehash[i].next_idx = startidx;
|
|
state->treehash[i].completed = 0;
|
|
state->treehash[i].stackusage = 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Given a set of parameters, this function returns the size of the secret key.
|
|
* This is implementation specific, as varying choices in tree traversal will
|
|
* result in varying requirements for state storage.
|
|
*
|
|
* This function handles both XMSS and XMSSMT parameter sets.
|
|
*/
|
|
unsigned long long xmss_xmssmt_core_sk_bytes(const xmss_params *params)
|
|
{
|
|
return params->index_bytes + 4 * params->n
|
|
+ (2 * params->d - 1) * (
|
|
(params->tree_height + 1) * params->n
|
|
+ 4
|
|
+ params->tree_height + 1
|
|
+ params->tree_height * params->n
|
|
+ (params->tree_height >> 1) * params->n
|
|
+ (params->tree_height - params->bds_k) * (7 + params->n)
|
|
+ ((1 << params->bds_k) - params->bds_k - 1) * params->n
|
|
+ 4
|
|
)
|
|
+ (params->d - 1) * params->wots_sig_bytes;
|
|
}
|
|
|
|
/*
|
|
* Generates a XMSS key pair for a given parameter set.
|
|
* Format sk: [(32bit) idx || SK_SEED || SK_PRF || root || PUB_SEED]
|
|
* Format pk: [root || PUB_SEED] omitting algo oid.
|
|
*/
|
|
int xmss_core_keypair(const xmss_params *params,
|
|
unsigned char *pk, unsigned char *sk)
|
|
{
|
|
uint32_t addr[8] = {0};
|
|
|
|
// TODO refactor BDS state not to need separate treehash instances
|
|
bds_state state;
|
|
treehash_inst treehash[params->tree_height - params->bds_k];
|
|
state.treehash = treehash;
|
|
|
|
xmss_deserialize_state(params, &state, sk);
|
|
|
|
state.stackoffset = 0;
|
|
state.next_leaf = 0;
|
|
|
|
// Set idx = 0
|
|
sk[0] = 0;
|
|
sk[1] = 0;
|
|
sk[2] = 0;
|
|
sk[3] = 0;
|
|
// Init SK_SEED (n byte) and SK_PRF (n byte)
|
|
randombytes(sk + params->index_bytes, 2*params->n);
|
|
|
|
// Init PUB_SEED (n byte)
|
|
randombytes(sk + params->index_bytes + 3*params->n, params->n);
|
|
// Copy PUB_SEED to public key
|
|
memcpy(pk + params->n, sk + params->index_bytes + 3*params->n, params->n);
|
|
|
|
// Compute root
|
|
treehash_init(params, pk, params->tree_height, 0, &state, sk + params->index_bytes, sk + params->index_bytes + 3*params->n, addr);
|
|
// copy root to sk
|
|
memcpy(sk + params->index_bytes + 2*params->n, pk, params->n);
|
|
|
|
/* Write the BDS state into sk. */
|
|
xmss_serialize_state(params, sk, &state);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Signs a message.
|
|
* Returns
|
|
* 1. an array containing the signature followed by the message AND
|
|
* 2. an updated secret key!
|
|
*
|
|
*/
|
|
int xmss_core_sign(const xmss_params *params,
|
|
unsigned char *sk,
|
|
unsigned char *sm, unsigned long long *smlen,
|
|
const unsigned char *m, unsigned long long mlen)
|
|
{
|
|
const unsigned char *pub_root = sk + params->index_bytes + 2*params->n;
|
|
|
|
uint16_t i = 0;
|
|
|
|
// TODO refactor BDS state not to need separate treehash instances
|
|
bds_state state;
|
|
treehash_inst treehash[params->tree_height - params->bds_k];
|
|
state.treehash = treehash;
|
|
|
|
/* Load the BDS state from sk. */
|
|
xmss_deserialize_state(params, &state, sk);
|
|
|
|
// Extract SK
|
|
unsigned long idx = ((unsigned long)sk[0] << 24) | ((unsigned long)sk[1] << 16) | ((unsigned long)sk[2] << 8) | sk[3];
|
|
unsigned char sk_seed[params->n];
|
|
memcpy(sk_seed, sk + params->index_bytes, params->n);
|
|
unsigned char sk_prf[params->n];
|
|
memcpy(sk_prf, sk + params->index_bytes + params->n, params->n);
|
|
unsigned char pub_seed[params->n];
|
|
memcpy(pub_seed, sk + params->index_bytes + 3*params->n, params->n);
|
|
|
|
// index as 32 bytes string
|
|
unsigned char idx_bytes_32[32];
|
|
ull_to_bytes(idx_bytes_32, 32, idx);
|
|
|
|
// Update SK
|
|
sk[0] = ((idx + 1) >> 24) & 255;
|
|
sk[1] = ((idx + 1) >> 16) & 255;
|
|
sk[2] = ((idx + 1) >> 8) & 255;
|
|
sk[3] = (idx + 1) & 255;
|
|
// Secret key for this non-forward-secure version is now updated.
|
|
// A production implementation should consider using a file handle instead,
|
|
// and write the updated secret key at this point!
|
|
|
|
// Init working params
|
|
unsigned char R[params->n];
|
|
unsigned char msg_h[params->n];
|
|
uint32_t ots_addr[8] = {0};
|
|
|
|
// ---------------------------------
|
|
// Message Hashing
|
|
// ---------------------------------
|
|
|
|
// Message Hash:
|
|
// First compute pseudorandom value
|
|
prf(params, R, idx_bytes_32, sk_prf);
|
|
|
|
/* Already put the message in the right place, to make it easier to prepend
|
|
* things when computing the hash over the message. */
|
|
memcpy(sm + params->sig_bytes, m, mlen);
|
|
|
|
/* Compute the message hash. */
|
|
hash_message(params, msg_h, R, pub_root, idx,
|
|
sm + params->sig_bytes - 4*params->n, mlen);
|
|
|
|
// Start collecting signature
|
|
*smlen = 0;
|
|
|
|
// Copy index to signature
|
|
sm[0] = (idx >> 24) & 255;
|
|
sm[1] = (idx >> 16) & 255;
|
|
sm[2] = (idx >> 8) & 255;
|
|
sm[3] = idx & 255;
|
|
|
|
sm += 4;
|
|
*smlen += 4;
|
|
|
|
// Copy R to signature
|
|
for (i = 0; i < params->n; i++) {
|
|
sm[i] = R[i];
|
|
}
|
|
|
|
sm += params->n;
|
|
*smlen += params->n;
|
|
|
|
// ----------------------------------
|
|
// Now we start to "really sign"
|
|
// ----------------------------------
|
|
|
|
// Prepare Address
|
|
set_type(ots_addr, 0);
|
|
set_ots_addr(ots_addr, idx);
|
|
|
|
// Compute WOTS signature
|
|
wots_sign(params, sm, msg_h, sk_seed, pub_seed, ots_addr);
|
|
|
|
sm += params->wots_sig_bytes;
|
|
*smlen += params->wots_sig_bytes;
|
|
|
|
// the auth path was already computed during the previous round
|
|
memcpy(sm, state.auth, params->tree_height*params->n);
|
|
|
|
if (idx < (1U << params->tree_height) - 1) {
|
|
bds_round(params, &state, idx, sk_seed, pub_seed, ots_addr);
|
|
bds_treehash_update(params, &state, (params->tree_height - params->bds_k) >> 1, sk_seed, pub_seed, ots_addr);
|
|
}
|
|
|
|
sm += params->tree_height*params->n;
|
|
*smlen += params->tree_height*params->n;
|
|
|
|
memcpy(sm, m, mlen);
|
|
*smlen += mlen;
|
|
|
|
/* Write the updated BDS state back into sk. */
|
|
xmss_serialize_state(params, sk, &state);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Generates a XMSSMT key pair for a given parameter set.
|
|
* Format sk: [(ceil(h/8) bit) idx || SK_SEED || SK_PRF || root || PUB_SEED]
|
|
* Format pk: [root || PUB_SEED] omitting algo oid.
|
|
*/
|
|
int xmssmt_core_keypair(const xmss_params *params,
|
|
unsigned char *pk, unsigned char *sk)
|
|
{
|
|
uint32_t addr[8] = {0};
|
|
unsigned int i;
|
|
unsigned char *wots_sigs;
|
|
|
|
// TODO refactor BDS state not to need separate treehash instances
|
|
bds_state states[2*params->d - 1];
|
|
treehash_inst treehash[(2*params->d - 1) * (params->tree_height - params->bds_k)];
|
|
for (i = 0; i < 2*params->d - 1; i++) {
|
|
states[i].treehash = treehash + i * (params->tree_height - params->bds_k);
|
|
}
|
|
|
|
xmssmt_deserialize_state(params, states, &wots_sigs, sk);
|
|
|
|
for (i = 0; i < 2 * params->d - 1; i++) {
|
|
states[i].stackoffset = 0;
|
|
states[i].next_leaf = 0;
|
|
}
|
|
|
|
// Set idx = 0
|
|
for (i = 0; i < params->index_bytes; i++) {
|
|
sk[i] = 0;
|
|
}
|
|
// Init SK_SEED (params->n byte) and SK_PRF (params->n byte)
|
|
randombytes(sk+params->index_bytes, 2*params->n);
|
|
|
|
// Init PUB_SEED (params->n byte)
|
|
randombytes(sk+params->index_bytes + 3*params->n, params->n);
|
|
// Copy PUB_SEED to public key
|
|
memcpy(pk+params->n, sk+params->index_bytes+3*params->n, params->n);
|
|
|
|
// Start with the bottom-most layer
|
|
set_layer_addr(addr, 0);
|
|
// Set up state and compute wots signatures for all but topmost tree root
|
|
for (i = 0; i < params->d - 1; i++) {
|
|
// Compute seed for OTS key pair
|
|
treehash_init(params, pk, params->tree_height, 0, states + i, sk+params->index_bytes, pk+params->n, addr);
|
|
set_layer_addr(addr, (i+1));
|
|
wots_sign(params, wots_sigs + i*params->wots_sig_bytes, pk, sk + params->index_bytes, pk+params->n, addr);
|
|
}
|
|
// Address now points to the single tree on layer d-1
|
|
treehash_init(params, pk, params->tree_height, 0, states + i, sk+params->index_bytes, pk+params->n, addr);
|
|
memcpy(sk + params->index_bytes + 2*params->n, pk, params->n);
|
|
|
|
xmssmt_serialize_state(params, sk, states);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Signs a message.
|
|
* Returns
|
|
* 1. an array containing the signature followed by the message AND
|
|
* 2. an updated secret key!
|
|
*
|
|
*/
|
|
int xmssmt_core_sign(const xmss_params *params,
|
|
unsigned char *sk,
|
|
unsigned char *sm, unsigned long long *smlen,
|
|
const unsigned char *m, unsigned long long mlen)
|
|
{
|
|
const unsigned char *pub_root = sk + params->index_bytes + 2*params->n;
|
|
|
|
uint64_t idx_tree;
|
|
uint32_t idx_leaf;
|
|
uint64_t i, j;
|
|
int needswap_upto = -1;
|
|
unsigned int updates;
|
|
|
|
unsigned char sk_seed[params->n];
|
|
unsigned char sk_prf[params->n];
|
|
unsigned char pub_seed[params->n];
|
|
// Init working params
|
|
unsigned char R[params->n];
|
|
unsigned char msg_h[params->n];
|
|
uint32_t addr[8] = {0};
|
|
uint32_t ots_addr[8] = {0};
|
|
unsigned char idx_bytes_32[32];
|
|
|
|
unsigned char *wots_sigs;
|
|
|
|
// TODO refactor BDS state not to need separate treehash instances
|
|
bds_state states[2*params->d - 1];
|
|
treehash_inst treehash[(2*params->d - 1) * (params->tree_height - params->bds_k)];
|
|
for (i = 0; i < 2*params->d - 1; i++) {
|
|
states[i].treehash = treehash + i * (params->tree_height - params->bds_k);
|
|
}
|
|
|
|
xmssmt_deserialize_state(params, states, &wots_sigs, sk);
|
|
|
|
// Extract SK
|
|
unsigned long long idx = 0;
|
|
for (i = 0; i < params->index_bytes; i++) {
|
|
idx |= ((unsigned long long)sk[i]) << 8*(params->index_bytes - 1 - i);
|
|
}
|
|
|
|
memcpy(sk_seed, sk+params->index_bytes, params->n);
|
|
memcpy(sk_prf, sk+params->index_bytes+params->n, params->n);
|
|
memcpy(pub_seed, sk+params->index_bytes+3*params->n, params->n);
|
|
|
|
// Update SK
|
|
for (i = 0; i < params->index_bytes; i++) {
|
|
sk[i] = ((idx + 1) >> 8*(params->index_bytes - 1 - i)) & 255;
|
|
}
|
|
// Secret key for this non-forward-secure version is now updated.
|
|
// A production implementation should consider using a file handle instead,
|
|
// and write the updated secret key at this point!
|
|
|
|
// ---------------------------------
|
|
// Message Hashing
|
|
// ---------------------------------
|
|
|
|
// Message Hash:
|
|
// First compute pseudorandom value
|
|
ull_to_bytes(idx_bytes_32, 32, idx);
|
|
prf(params, R, idx_bytes_32, sk_prf);
|
|
|
|
/* Already put the message in the right place, to make it easier to prepend
|
|
* things when computing the hash over the message. */
|
|
memcpy(sm + params->sig_bytes, m, mlen);
|
|
|
|
/* Compute the message hash. */
|
|
hash_message(params, msg_h, R, pub_root, idx,
|
|
sm + params->sig_bytes - 4*params->n, mlen);
|
|
|
|
// Start collecting signature
|
|
*smlen = 0;
|
|
|
|
// Copy index to signature
|
|
for (i = 0; i < params->index_bytes; i++) {
|
|
sm[i] = (idx >> 8*(params->index_bytes - 1 - i)) & 255;
|
|
}
|
|
|
|
sm += params->index_bytes;
|
|
*smlen += params->index_bytes;
|
|
|
|
// Copy R to signature
|
|
for (i = 0; i < params->n; i++) {
|
|
sm[i] = R[i];
|
|
}
|
|
|
|
sm += params->n;
|
|
*smlen += params->n;
|
|
|
|
// ----------------------------------
|
|
// Now we start to "really sign"
|
|
// ----------------------------------
|
|
|
|
// Handle lowest layer separately as it is slightly different...
|
|
|
|
// Prepare Address
|
|
set_type(ots_addr, 0);
|
|
idx_tree = idx >> params->tree_height;
|
|
idx_leaf = (idx & ((1 << params->tree_height)-1));
|
|
set_layer_addr(ots_addr, 0);
|
|
set_tree_addr(ots_addr, idx_tree);
|
|
set_ots_addr(ots_addr, idx_leaf);
|
|
|
|
// Compute WOTS signature
|
|
wots_sign(params, sm, msg_h, sk_seed, pub_seed, ots_addr);
|
|
|
|
sm += params->wots_sig_bytes;
|
|
*smlen += params->wots_sig_bytes;
|
|
|
|
memcpy(sm, states[0].auth, params->tree_height*params->n);
|
|
sm += params->tree_height*params->n;
|
|
*smlen += params->tree_height*params->n;
|
|
|
|
// prepare signature of remaining layers
|
|
for (i = 1; i < params->d; i++) {
|
|
// put WOTS signature in place
|
|
memcpy(sm, wots_sigs + (i-1)*params->wots_sig_bytes, params->wots_sig_bytes);
|
|
|
|
sm += params->wots_sig_bytes;
|
|
*smlen += params->wots_sig_bytes;
|
|
|
|
// put AUTH nodes in place
|
|
memcpy(sm, states[i].auth, params->tree_height*params->n);
|
|
sm += params->tree_height*params->n;
|
|
*smlen += params->tree_height*params->n;
|
|
}
|
|
|
|
updates = (params->tree_height - params->bds_k) >> 1;
|
|
|
|
set_tree_addr(addr, (idx_tree + 1));
|
|
// mandatory update for NEXT_0 (does not count towards h-k/2) if NEXT_0 exists
|
|
if ((1 + idx_tree) * (1 << params->tree_height) + idx_leaf < (1ULL << params->full_height)) {
|
|
bds_state_update(params, &states[params->d], sk_seed, pub_seed, addr);
|
|
}
|
|
|
|
for (i = 0; i < params->d; i++) {
|
|
// check if we're not at the end of a tree
|
|
if (! (((idx + 1) & ((1ULL << ((i+1)*params->tree_height)) - 1)) == 0)) {
|
|
idx_leaf = (idx >> (params->tree_height * i)) & ((1 << params->tree_height)-1);
|
|
idx_tree = (idx >> (params->tree_height * (i+1)));
|
|
set_layer_addr(addr, i);
|
|
set_tree_addr(addr, idx_tree);
|
|
if (i == (unsigned int) (needswap_upto + 1)) {
|
|
bds_round(params, &states[i], idx_leaf, sk_seed, pub_seed, addr);
|
|
}
|
|
updates = bds_treehash_update(params, &states[i], updates, sk_seed, pub_seed, addr);
|
|
set_tree_addr(addr, (idx_tree + 1));
|
|
// if a NEXT-tree exists for this level;
|
|
if ((1 + idx_tree) * (1 << params->tree_height) + idx_leaf < (1ULL << (params->full_height - params->tree_height * i))) {
|
|
if (i > 0 && updates > 0 && states[params->d + i].next_leaf < (1ULL << params->full_height)) {
|
|
bds_state_update(params, &states[params->d + i], sk_seed, pub_seed, addr);
|
|
updates--;
|
|
}
|
|
}
|
|
}
|
|
else if (idx < (1ULL << params->full_height) - 1) {
|
|
deep_state_swap(params, states+params->d + i, states + i);
|
|
|
|
set_layer_addr(ots_addr, (i+1));
|
|
set_tree_addr(ots_addr, ((idx + 1) >> ((i+2) * params->tree_height)));
|
|
set_ots_addr(ots_addr, (((idx >> ((i+1) * params->tree_height)) + 1) & ((1 << params->tree_height)-1)));
|
|
|
|
wots_sign(params, wots_sigs + i*params->wots_sig_bytes, states[i].stack, sk_seed, pub_seed, ots_addr);
|
|
|
|
states[params->d + i].stackoffset = 0;
|
|
states[params->d + i].next_leaf = 0;
|
|
|
|
updates--; // WOTS-signing counts as one update
|
|
needswap_upto = i;
|
|
for (j = 0; j < params->tree_height-params->bds_k; j++) {
|
|
states[i].treehash[j].completed = 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
memcpy(sm, m, mlen);
|
|
*smlen += mlen;
|
|
|
|
xmssmt_serialize_state(params, sk, states);
|
|
|
|
return 0;
|
|
}
|