xmss-KAT-generator/xmss_commons.c
Joost Rijneveld 6a8571d880
Revert to using runtime-only parameter struct
Using global defines for parameters (as seems to be typical in
academic crypto code) does not play nice with multithreading at all.
2017-10-16 12:09:07 +02:00

309 lines
8.8 KiB
C

/*
xmss_commons.c 20160722
Andreas Hülsing
Joost Rijneveld
Public domain.
*/
#include <stdlib.h>
#include <string.h>
#include <stdint.h>
#include "hash.h"
#include "hash_address.h"
#include "params.h"
#include "wots.h"
#include "xmss_commons.h"
void to_byte(unsigned char *out, unsigned long long in, uint32_t bytes)
{
int i;
for (i = bytes-1; i >= 0; i--) {
out[i] = in & 0xff;
in = in >> 8;
}
}
/**
* Computes the leaf at a given address. First generates the WOTS key pair, then computes leaf using l_tree. As this happens position independent, we only require that addr encodes the right ltree-address.
*/
void gen_leaf_wots(const xmss_params *params, unsigned char *leaf,
const unsigned char *sk_seed, const unsigned char *pub_seed,
uint32_t ltree_addr[8], uint32_t ots_addr[8])
{
unsigned char seed[params->n];
unsigned char pk[params->wots_keysize];
get_seed(params, seed, sk_seed, ots_addr);
wots_pkgen(params, pk, seed, pub_seed, ots_addr);
l_tree(params, leaf, pk, pub_seed, ltree_addr);
}
/**
* Used for pseudorandom keygeneration,
* generates the seed for the WOTS keypair at address addr
*
* takes params->n byte sk_seed and returns params->n byte seed using 32 byte address addr.
*/
void get_seed(const xmss_params *params, unsigned char *seed,
const unsigned char *sk_seed, uint32_t addr[8])
{
unsigned char bytes[32];
// Make sure that chain addr, hash addr, and key bit are 0!
set_chain_addr(addr, 0);
set_hash_addr(addr, 0);
set_key_and_mask(addr, 0);
// Generate pseudorandom value
addr_to_byte(bytes, addr);
prf(params, seed, bytes, sk_seed, params->n);
}
/**
* Computes a leaf from a WOTS public key using an L-tree.
*/
void l_tree(const xmss_params *params, unsigned char *leaf, unsigned char *wots_pk,
const unsigned char *pub_seed, uint32_t addr[8])
{
unsigned int l = params->wots_len;
uint32_t i = 0;
uint32_t height = 0;
uint32_t bound;
set_tree_height(addr, height);
while (l > 1) {
bound = l >> 1;
for (i = 0; i < bound; i++) {
set_tree_index(addr, i);
hash_h(params, wots_pk + i*params->n, wots_pk + i*2*params->n, pub_seed, addr);
}
if (l & 1) {
memcpy(wots_pk + (l >> 1)*params->n, wots_pk + (l - 1)*params->n, params->n);
l = (l >> 1) + 1;
}
else {
l = l >> 1;
}
height++;
set_tree_height(addr, height);
}
memcpy(leaf, wots_pk, params->n);
}
/**
* Computes a root node given a leaf and an authapth
*/
static void validate_authpath(const xmss_params *params, unsigned char *root,
const unsigned char *leaf, unsigned long leafidx,
const unsigned char *authpath,
const unsigned char *pub_seed, uint32_t addr[8])
{
uint32_t i, j;
unsigned char buffer[2*params->n];
// If leafidx is odd (last bit = 1), current path element is a right child and authpath has to go to the left.
// Otherwise, it is the other way around
if (leafidx & 1) {
for (j = 0; j < params->n; j++) {
buffer[params->n + j] = leaf[j];
buffer[j] = authpath[j];
}
}
else {
for (j = 0; j < params->n; j++) {
buffer[j] = leaf[j];
buffer[params->n + j] = authpath[j];
}
}
authpath += params->n;
for (i = 0; i < params->tree_height-1; i++) {
set_tree_height(addr, i);
leafidx >>= 1;
set_tree_index(addr, leafidx);
if (leafidx & 1) {
hash_h(params, buffer + params->n, buffer, pub_seed, addr);
for (j = 0; j < params->n; j++) {
buffer[j] = authpath[j];
}
}
else {
hash_h(params, buffer, buffer, pub_seed, addr);
for (j = 0; j < params->n; j++) {
buffer[j + params->n] = authpath[j];
}
}
authpath += params->n;
}
set_tree_height(addr, params->tree_height - 1);
leafidx >>= 1;
set_tree_index(addr, leafidx);
hash_h(params, root, buffer, pub_seed, addr);
}
/**
* Verifies a given message signature pair under a given public key.
*/
int xmss_core_sign_open(const xmss_params *params,
unsigned char *m, unsigned long long *mlen,
const unsigned char *sm, unsigned long long smlen,
const unsigned char *pk)
{
unsigned long long i;
unsigned long idx = 0;
unsigned char wots_pk[params->wots_keysize];
unsigned char pkhash[params->n];
unsigned char root[params->n];
unsigned char msg_h[params->n];
unsigned char hash_key[3*params->n];
unsigned char pub_seed[params->n];
memcpy(pub_seed, pk + params->n, params->n);
// Init addresses
uint32_t ots_addr[8] = {0};
uint32_t ltree_addr[8] = {0};
uint32_t node_addr[8] = {0};
set_type(ots_addr, 0);
set_type(ltree_addr, 1);
set_type(node_addr, 2);
*mlen = smlen - params->bytes;
// Extract index
for (i = 0; i < params->index_len; i++) {
idx |= ((unsigned long long)sm[i]) << (8*(params->index_len - 1 - i));
}
// Generate hash key (R || root || idx)
memcpy(hash_key, sm + params->index_len, params->n);
memcpy(hash_key + params->n, pk, params->n);
to_byte(hash_key + 2*params->n, idx, params->n);
// hash message
h_msg(params, msg_h, sm + params->bytes, *mlen, hash_key, 3*params->n);
sm += params->index_len + params->n;
// Prepare Address
set_ots_addr(ots_addr, idx);
// Check WOTS signature
wots_pk_from_sig(params, wots_pk, sm, msg_h, pub_seed, ots_addr);
sm += params->wots_keysize;
// Compute Ltree
set_ltree_addr(ltree_addr, idx);
l_tree(params, pkhash, wots_pk, pub_seed, ltree_addr);
// Compute root
validate_authpath(params, root, pkhash, idx, sm, pub_seed, node_addr);
sm += params->tree_height*params->n;
for (i = 0; i < params->n; i++) {
if (root[i] != pk[i]) {
for (i = 0; i < *mlen; i++) {
m[i] = 0;
}
*mlen = -1;
return -1;
}
}
for (i = 0; i < *mlen; i++) {
m[i] = sm[i];
}
return 0;
}
/**
* Verifies a given message signature pair under a given public key.
*/
int xmssmt_core_sign_open(const xmss_params *params,
unsigned char *m, unsigned long long *mlen,
const unsigned char *sm, unsigned long long smlen,
const unsigned char *pk)
{
uint32_t idx_leaf;
unsigned long long i;
unsigned long long idx = 0;
unsigned char wots_pk[params->wots_keysize];
unsigned char pkhash[params->n];
unsigned char root[params->n];
unsigned char *msg_h = root;
unsigned char hash_key[3*params->n];
const unsigned char *pub_seed = pk + params->n;
// Init addresses
uint32_t ots_addr[8] = {0};
uint32_t ltree_addr[8] = {0};
uint32_t node_addr[8] = {0};
set_type(ots_addr, 0);
set_type(ltree_addr, 1);
set_type(node_addr, 2);
*mlen = smlen - params->bytes;
// Extract index
for (i = 0; i < params->index_len; i++) {
idx |= ((unsigned long long)sm[i]) << (8*(params->index_len - 1 - i));
}
// Generate hash key (R || root || idx)
memcpy(hash_key, sm + params->index_len, params->n);
memcpy(hash_key + params->n, pk, params->n);
to_byte(hash_key + 2*params->n, idx, params->n);
// hash message
h_msg(params, msg_h, sm + params->bytes, *mlen, hash_key, 3*params->n);
sm += params->index_len + params->n;
for (i = 0; i < params->d; i++) {
// Prepare Address
idx_leaf = (idx & ((1 << params->tree_height)-1));
idx = idx >> params->tree_height;
set_layer_addr(ots_addr, i);
set_layer_addr(ltree_addr, i);
set_layer_addr(node_addr, i);
set_tree_addr(ltree_addr, idx);
set_tree_addr(ots_addr, idx);
set_tree_addr(node_addr, idx);
set_ots_addr(ots_addr, idx_leaf);
// Check WOTS signature
wots_pk_from_sig(params, wots_pk, sm, root, pub_seed, ots_addr);
sm += params->wots_keysize;
// Compute Ltree
set_ltree_addr(ltree_addr, idx_leaf);
l_tree(params, pkhash, wots_pk, pub_seed, ltree_addr);
// Compute root
validate_authpath(params, root, pkhash, idx_leaf, sm, pub_seed, node_addr);
sm += params->tree_height*params->n;
}
for (i = 0; i < params->n; i++) {
if (root[i] != pk[i]) {
for (i = 0; i < *mlen; i++) {
m[i] = 0;
}
*mlen = -1;
return -1;
}
}
for (i = 0; i < *mlen; i++) {
m[i] = sm[i];
}
return 0;
}