365 строки
12 KiB
C
365 строки
12 KiB
C
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <stdint.h>
|
|
|
|
#include "hash.h"
|
|
#include "hash_address.h"
|
|
#include "params.h"
|
|
#include "randombytes.h"
|
|
#include "wots.h"
|
|
#include "xmss_commons.h"
|
|
#include "xmss_core.h"
|
|
|
|
/**
|
|
* Merkle's TreeHash algorithm. Currently only used for key generation.
|
|
* Computes the root node of the top-most subtree.
|
|
*/
|
|
static void treehash(const xmss_params *params,
|
|
unsigned char *root, unsigned char *auth_path,
|
|
const unsigned char *sk_seed,
|
|
const unsigned char *pub_seed,
|
|
uint32_t leaf_idx, const uint32_t subtree_addr[8])
|
|
{
|
|
unsigned char stack[(params->tree_height+1)*params->n];
|
|
unsigned int heights[params->tree_height+1];
|
|
unsigned int offset = 0;
|
|
|
|
/* The subtree has at most 2^20 leafs, so uint32_t suffices. */
|
|
uint32_t idx;
|
|
uint32_t tree_idx;
|
|
|
|
/* We need all three types of addresses in parallel. */
|
|
uint32_t ots_addr[8] = {0};
|
|
uint32_t ltree_addr[8] = {0};
|
|
uint32_t node_addr[8] = {0};
|
|
|
|
/* Select the required subtree. */
|
|
copy_subtree_addr(ots_addr, subtree_addr);
|
|
copy_subtree_addr(ltree_addr, subtree_addr);
|
|
copy_subtree_addr(node_addr, subtree_addr);
|
|
|
|
set_type(ots_addr, 0);
|
|
set_type(ltree_addr, 1);
|
|
set_type(node_addr, 2);
|
|
|
|
for (idx = 0; idx < (uint32_t)(1 << params->tree_height); idx++) {
|
|
/* Add the next leaf node to the stack. */
|
|
set_ltree_addr(ltree_addr, idx);
|
|
set_ots_addr(ots_addr, idx);
|
|
gen_leaf_wots(params, stack + offset*params->n,
|
|
sk_seed, pub_seed, ltree_addr, ots_addr);
|
|
offset++;
|
|
heights[offset - 1] = 0;
|
|
|
|
/* If this is a node we need for the auth path.. */
|
|
if ((leaf_idx ^ 0x1) == idx) {
|
|
memcpy(auth_path, stack + (offset - 1)*params->n, params->n);
|
|
}
|
|
|
|
/* While the top-most nodes are of equal height.. */
|
|
while (offset >= 2 && heights[offset - 1] == heights[offset - 2]) {
|
|
/* Compute index of the new node, in the next layer. */
|
|
tree_idx = (idx >> (heights[offset - 1] + 1));
|
|
|
|
/* Hash the top-most nodes from the stack together. */
|
|
/* Note that tree height is the 'lower' layer, even though we use
|
|
the index of the new node on the 'higher' layer. This follows
|
|
from the fact that we address the hash function calls. */
|
|
set_tree_height(node_addr, heights[offset - 1]);
|
|
set_tree_index(node_addr, tree_idx);
|
|
hash_h(params, stack + (offset-2)*params->n,
|
|
stack + (offset-2)*params->n, pub_seed, node_addr);
|
|
offset--;
|
|
/* Note that the top-most node is now one layer higher. */
|
|
heights[offset - 1]++;
|
|
|
|
/* If this is a node we need for the auth path.. */
|
|
if (((leaf_idx >> heights[offset - 1]) ^ 0x1) == tree_idx) {
|
|
memcpy(auth_path + heights[offset - 1]*params->n,
|
|
stack + (offset - 1)*params->n, params->n);
|
|
}
|
|
}
|
|
}
|
|
memcpy(root, stack, params->n);
|
|
}
|
|
|
|
/*
|
|
* Generates a XMSS key pair for a given parameter set.
|
|
* Format sk: [(32bit) index || SK_SEED || SK_PRF || PUB_SEED || root]
|
|
* Format pk: [root || PUB_SEED], omitting algorithm OID.
|
|
*/
|
|
int xmss_core_keypair(const xmss_params *params,
|
|
unsigned char *pk, unsigned char *sk)
|
|
{
|
|
/* The key generation procedure of XMSS and XMSSMT is exactly the same.
|
|
The only important detail is that the right subtree must be selected;
|
|
this requires us to correctly set the d=1 parameter for XMSS. */
|
|
return xmssmt_core_keypair(params, pk, sk);
|
|
}
|
|
|
|
/**
|
|
* Signs a message.
|
|
* Returns
|
|
* 1. an array containing the signature followed by the message AND
|
|
* 2. an updated secret key!
|
|
*
|
|
*/
|
|
int xmss_core_sign(const xmss_params *params, unsigned char *sk, unsigned char *sm, unsigned long long *smlen, const unsigned char *m, unsigned long long mlen)
|
|
{
|
|
uint16_t i = 0;
|
|
|
|
// Extract SK
|
|
uint32_t idx = ((unsigned long)sk[0] << 24) | ((unsigned long)sk[1] << 16) | ((unsigned long)sk[2] << 8) | sk[3];
|
|
unsigned char sk_seed[params->n];
|
|
unsigned char sk_prf[params->n];
|
|
unsigned char pub_seed[params->n];
|
|
unsigned char hash_key[3*params->n];
|
|
|
|
// index as 32 bytes string
|
|
unsigned char idx_bytes_32[32];
|
|
ull_to_bytes(idx_bytes_32, 32, idx);
|
|
|
|
memcpy(sk_seed, sk+4, params->n);
|
|
memcpy(sk_prf, sk+4+params->n, params->n);
|
|
memcpy(pub_seed, sk+4+2*params->n, params->n);
|
|
|
|
// Update SK
|
|
sk[0] = ((idx + 1) >> 24) & 255;
|
|
sk[1] = ((idx + 1) >> 16) & 255;
|
|
sk[2] = ((idx + 1) >> 8) & 255;
|
|
sk[3] = (idx + 1) & 255;
|
|
// Secret key for this non-forward-secure version is now updated.
|
|
// A production implementation should consider using a file handle instead,
|
|
// and write the updated secret key at this point!
|
|
|
|
// Init working params
|
|
unsigned char R[params->n];
|
|
unsigned char msg_h[params->n];
|
|
unsigned char root[params->n];
|
|
unsigned char ots_seed[params->n];
|
|
uint32_t ots_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0};
|
|
|
|
// ---------------------------------
|
|
// Message Hashing
|
|
// ---------------------------------
|
|
|
|
// Message Hash:
|
|
// First compute pseudorandom value
|
|
prf(params, R, idx_bytes_32, sk_prf, params->n);
|
|
// Generate hash key (R || root || idx)
|
|
memcpy(hash_key, R, params->n);
|
|
memcpy(hash_key+params->n, sk+4+3*params->n, params->n);
|
|
ull_to_bytes(hash_key+2*params->n, params->n, idx);
|
|
// Then use it for message digest
|
|
h_msg(params, msg_h, m, mlen, hash_key, 3*params->n);
|
|
|
|
// Start collecting signature
|
|
*smlen = 0;
|
|
|
|
// Copy index to signature
|
|
sm[0] = (idx >> 24) & 255;
|
|
sm[1] = (idx >> 16) & 255;
|
|
sm[2] = (idx >> 8) & 255;
|
|
sm[3] = idx & 255;
|
|
|
|
sm += 4;
|
|
*smlen += 4;
|
|
|
|
// Copy R to signature
|
|
for (i = 0; i < params->n; i++)
|
|
sm[i] = R[i];
|
|
|
|
sm += params->n;
|
|
*smlen += params->n;
|
|
|
|
// ----------------------------------
|
|
// Now we start to "really sign"
|
|
// ----------------------------------
|
|
|
|
// Prepare Address
|
|
set_type(ots_addr, 0);
|
|
set_ots_addr(ots_addr, idx);
|
|
|
|
// Compute seed for OTS key pair
|
|
get_seed(params, ots_seed, sk_seed, ots_addr);
|
|
|
|
// Compute WOTS signature
|
|
wots_sign(params, sm, msg_h, ots_seed, pub_seed, ots_addr);
|
|
|
|
sm += params->wots_keysize;
|
|
*smlen += params->wots_keysize;
|
|
|
|
treehash(params, root, sm, sk_seed, pub_seed, idx, ots_addr);
|
|
sm += params->tree_height*params->n;
|
|
*smlen += params->tree_height*params->n;
|
|
|
|
memcpy(sm, m, mlen);
|
|
*smlen += mlen;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Generates a XMSSMT key pair for a given parameter set.
|
|
* Format sk: [(ceil(h/8) bit) index || SK_SEED || SK_PRF || PUB_SEED]
|
|
* Format pk: [root || PUB_SEED] omitting algorithm OID.
|
|
*/
|
|
int xmssmt_core_keypair(const xmss_params *params, unsigned char *pk, unsigned char *sk)
|
|
{
|
|
/* We do not need the auth path in key generation, but it simplifies the
|
|
code to have just one treehash routine that computes both root and path
|
|
in one function. */
|
|
unsigned char auth_path[params->tree_height * params->n];
|
|
uint32_t top_tree_addr[8] = {0};
|
|
set_layer_addr(top_tree_addr, params->d - 1);
|
|
|
|
/* Initialize index to 0. */
|
|
memset(sk, 0, params->index_len);
|
|
sk += 4;
|
|
|
|
/* Initialize SK_SEED, SK_PRF and PUB_SEED. */
|
|
randombytes(sk, 3 * params->n);
|
|
memcpy(pk + params->n, sk + 2*params->n, params->n);
|
|
|
|
/* Compute root node of the top-most subtree. */
|
|
treehash(params, pk, auth_path, sk, pk + params->n, 0, top_tree_addr);
|
|
memcpy(sk + 3*params->n, pk, params->n);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Signs a message.
|
|
* Returns
|
|
* 1. an array containing the signature followed by the message AND
|
|
* 2. an updated secret key!
|
|
*
|
|
*/
|
|
int xmssmt_core_sign(const xmss_params *params, unsigned char *sk, unsigned char *sm, unsigned long long *smlen, const unsigned char *m, unsigned long long mlen)
|
|
{
|
|
uint64_t idx_tree;
|
|
uint32_t idx_leaf;
|
|
uint64_t i;
|
|
|
|
unsigned char sk_seed[params->n];
|
|
unsigned char sk_prf[params->n];
|
|
unsigned char pub_seed[params->n];
|
|
// Init working params
|
|
unsigned char R[params->n];
|
|
unsigned char hash_key[3*params->n];
|
|
unsigned char msg_h[params->n];
|
|
unsigned char root[params->n];
|
|
unsigned char ots_seed[params->n];
|
|
uint32_t ots_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0};
|
|
unsigned char idx_bytes_32[32];
|
|
|
|
// Extract SK
|
|
unsigned long long idx = 0;
|
|
for (i = 0; i < params->index_len; i++) {
|
|
idx |= ((unsigned long long)sk[i]) << 8*(params->index_len - 1 - i);
|
|
}
|
|
|
|
memcpy(sk_seed, sk+params->index_len, params->n);
|
|
memcpy(sk_prf, sk+params->index_len+params->n, params->n);
|
|
memcpy(pub_seed, sk+params->index_len+2*params->n, params->n);
|
|
|
|
// Update SK
|
|
for (i = 0; i < params->index_len; i++) {
|
|
sk[i] = ((idx + 1) >> 8*(params->index_len - 1 - i)) & 255;
|
|
}
|
|
// Secret key for this non-forward-secure version is now updated.
|
|
// A production implementation should consider using a file handle instead,
|
|
// and write the updated secret key at this point!
|
|
|
|
// ---------------------------------
|
|
// Message Hashing
|
|
// ---------------------------------
|
|
|
|
// Message Hash:
|
|
// First compute pseudorandom value
|
|
ull_to_bytes(idx_bytes_32, 32, idx);
|
|
prf(params, R, idx_bytes_32, sk_prf, params->n);
|
|
// Generate hash key (R || root || idx)
|
|
memcpy(hash_key, R, params->n);
|
|
memcpy(hash_key+params->n, sk+params->index_len+3*params->n, params->n);
|
|
ull_to_bytes(hash_key+2*params->n, params->n, idx);
|
|
|
|
// Then use it for message digest
|
|
h_msg(params, msg_h, m, mlen, hash_key, 3*params->n);
|
|
|
|
// Start collecting signature
|
|
*smlen = 0;
|
|
|
|
// Copy index to signature
|
|
for (i = 0; i < params->index_len; i++) {
|
|
sm[i] = (idx >> 8*(params->index_len - 1 - i)) & 255;
|
|
}
|
|
|
|
sm += params->index_len;
|
|
*smlen += params->index_len;
|
|
|
|
// Copy R to signature
|
|
for (i = 0; i < params->n; i++) {
|
|
sm[i] = R[i];
|
|
}
|
|
|
|
sm += params->n;
|
|
*smlen += params->n;
|
|
|
|
// ----------------------------------
|
|
// Now we start to "really sign"
|
|
// ----------------------------------
|
|
|
|
// Handle lowest layer separately as it is slightly different...
|
|
|
|
// Prepare Address
|
|
set_type(ots_addr, 0);
|
|
idx_tree = idx >> params->tree_height;
|
|
idx_leaf = (idx & ((1 << params->tree_height)-1));
|
|
set_layer_addr(ots_addr, 0);
|
|
set_tree_addr(ots_addr, idx_tree);
|
|
set_ots_addr(ots_addr, idx_leaf);
|
|
|
|
// Compute seed for OTS key pair
|
|
get_seed(params, ots_seed, sk_seed, ots_addr);
|
|
|
|
// Compute WOTS signature
|
|
wots_sign(params, sm, msg_h, ots_seed, pub_seed, ots_addr);
|
|
|
|
sm += params->wots_keysize;
|
|
*smlen += params->wots_keysize;
|
|
|
|
treehash(params, root, sm, sk_seed, pub_seed, idx_leaf, ots_addr);
|
|
sm += params->tree_height*params->n;
|
|
*smlen += params->tree_height*params->n;
|
|
|
|
// Now loop over remaining layers...
|
|
unsigned int j;
|
|
for (j = 1; j < params->d; j++) {
|
|
// Prepare Address
|
|
idx_leaf = (idx_tree & ((1 << params->tree_height)-1));
|
|
idx_tree = idx_tree >> params->tree_height;
|
|
set_layer_addr(ots_addr, j);
|
|
set_tree_addr(ots_addr, idx_tree);
|
|
set_ots_addr(ots_addr, idx_leaf);
|
|
|
|
// Compute seed for OTS key pair
|
|
get_seed(params, ots_seed, sk_seed, ots_addr);
|
|
|
|
// Compute WOTS signature
|
|
wots_sign(params, sm, root, ots_seed, pub_seed, ots_addr);
|
|
|
|
sm += params->wots_keysize;
|
|
*smlen += params->wots_keysize;
|
|
|
|
treehash(params, root, sm, sk_seed, pub_seed, idx_leaf, ots_addr);
|
|
sm += params->tree_height*params->n;
|
|
*smlen += params->tree_height*params->n;
|
|
}
|
|
|
|
memcpy(sm, m, mlen);
|
|
*smlen += mlen;
|
|
|
|
return 0;
|
|
}
|