boringssl/crypto/obj/obj.c

622 lines
17 KiB
C
Raw Normal View History

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.] */
#if !defined(__STDC_FORMAT_MACROS)
#define __STDC_FORMAT_MACROS
#endif
#include <openssl/obj.h>
#include <inttypes.h>
#include <limits.h>
#include <string.h>
#include <openssl/asn1.h>
#include <openssl/buf.h>
#include <openssl/bytestring.h>
#include <openssl/err.h>
#include <openssl/lhash.h>
#include <openssl/mem.h>
#include <openssl/thread.h>
#include "obj_dat.h"
#include "../internal.h"
static struct CRYPTO_STATIC_MUTEX global_added_lock = CRYPTO_STATIC_MUTEX_INIT;
// These globals are protected by |global_added_lock|.
static LHASH_OF(ASN1_OBJECT) *global_added_by_data = NULL;
static LHASH_OF(ASN1_OBJECT) *global_added_by_nid = NULL;
static LHASH_OF(ASN1_OBJECT) *global_added_by_short_name = NULL;
static LHASH_OF(ASN1_OBJECT) *global_added_by_long_name = NULL;
static struct CRYPTO_STATIC_MUTEX global_next_nid_lock =
CRYPTO_STATIC_MUTEX_INIT;
static unsigned global_next_nid = NUM_NID;
static int obj_next_nid(void) {
int ret;
CRYPTO_STATIC_MUTEX_lock_write(&global_next_nid_lock);
ret = global_next_nid++;
CRYPTO_STATIC_MUTEX_unlock_write(&global_next_nid_lock);
return ret;
}
ASN1_OBJECT *OBJ_dup(const ASN1_OBJECT *o) {
ASN1_OBJECT *r;
unsigned char *data = NULL;
char *sn = NULL, *ln = NULL;
if (o == NULL) {
return NULL;
}
if (!(o->flags & ASN1_OBJECT_FLAG_DYNAMIC)) {
// TODO(fork): this is a little dangerous.
return (ASN1_OBJECT *)o;
}
r = ASN1_OBJECT_new();
if (r == NULL) {
OPENSSL_PUT_ERROR(OBJ, ERR_R_ASN1_LIB);
return NULL;
}
r->ln = r->sn = NULL;
data = OPENSSL_malloc(o->length);
if (data == NULL) {
goto err;
}
if (o->data != NULL) {
OPENSSL_memcpy(data, o->data, o->length);
}
// once data is attached to an object, it remains const
r->data = data;
r->length = o->length;
r->nid = o->nid;
if (o->ln != NULL) {
ln = OPENSSL_strdup(o->ln);
if (ln == NULL) {
goto err;
}
}
if (o->sn != NULL) {
sn = OPENSSL_strdup(o->sn);
if (sn == NULL) {
goto err;
}
}
r->sn = sn;
r->ln = ln;
r->flags =
o->flags | (ASN1_OBJECT_FLAG_DYNAMIC | ASN1_OBJECT_FLAG_DYNAMIC_STRINGS |
ASN1_OBJECT_FLAG_DYNAMIC_DATA);
return r;
err:
OPENSSL_PUT_ERROR(OBJ, ERR_R_MALLOC_FAILURE);
OPENSSL_free(ln);
OPENSSL_free(sn);
OPENSSL_free(data);
OPENSSL_free(r);
return NULL;
}
int OBJ_cmp(const ASN1_OBJECT *a, const ASN1_OBJECT *b) {
int ret;
ret = a->length - b->length;
if (ret) {
return ret;
}
return OPENSSL_memcmp(a->data, b->data, a->length);
}
Switch OPENSSL_VERSION_NUMBER to 1.1.0. Although we are derived from 1.0.2, we mimic 1.1.0 in some ways around our FOO_up_ref functions and opaque libssl types. This causes some difficulties when porting third-party code as any OPENSSL_VERSION_NUMBER checks for 1.1.0 APIs we have will be wrong. Moreover, adding accessors without changing OPENSSL_VERSION_NUMBER can break external projects. It is common to implement a compatibility version of an accessor under #ifdef as a static function. This then conflicts with our headers if we, unlike OpenSSL 1.0.2, have this function. This change switches OPENSSL_VERSION_NUMBER to 1.1.0 and atomically adds enough accessors for software with 1.1.0 support already. The hope is this will unblock hiding SSL_CTX and SSL_SESSION, which will be especially useful with C++-ficiation. The cost is we will hit some growing pains as more 1.1.0 consumers enter the ecosystem and we converge on the right set of APIs to import from upstream. It does not remove any 1.0.2 APIs, so we will not require that all projects support 1.1.0. The exception is APIs which changed in 1.1.0 but did not change the function signature. Those are breaking changes. Specifically: - SSL_CTX_sess_set_get_cb is now const-correct. - X509_get0_signature is now const-correct. For C++ consumers only, this change temporarily includes an overload hack for SSL_CTX_sess_set_get_cb that keeps the old callback working. This is a workaround for Node not yet supporting OpenSSL 1.1.0. The version number is set at (the as yet unreleased) 1.1.0g to denote that this change includes https://github.com/openssl/openssl/pull/4384. Bug: 91 Change-Id: I5eeb27448a6db4c25c244afac37f9604d9608a76 Reviewed-on: https://boringssl-review.googlesource.com/10340 Commit-Queue: David Benjamin <davidben@google.com> CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org> Reviewed-by: Adam Langley <agl@google.com>
2016-08-12 19:48:19 +01:00
const uint8_t *OBJ_get0_data(const ASN1_OBJECT *obj) {
if (obj == NULL) {
return NULL;
}
return obj->data;
}
size_t OBJ_length(const ASN1_OBJECT *obj) {
if (obj == NULL || obj->length < 0) {
return 0;
}
return (size_t)obj->length;
}
// obj_cmp is called to search the kNIDsInOIDOrder array. The |key| argument is
// an |ASN1_OBJECT|* that we're looking for and |element| is a pointer to an
// unsigned int in the array.
static int obj_cmp(const void *key, const void *element) {
unsigned nid = *((const unsigned*) element);
const ASN1_OBJECT *a = key;
const ASN1_OBJECT *b = &kObjects[nid];
if (a->length < b->length) {
return -1;
} else if (a->length > b->length) {
return 1;
}
return OPENSSL_memcmp(a->data, b->data, a->length);
}
int OBJ_obj2nid(const ASN1_OBJECT *obj) {
const unsigned int *nid_ptr;
if (obj == NULL) {
return NID_undef;
}
if (obj->nid != 0) {
return obj->nid;
}
CRYPTO_STATIC_MUTEX_lock_read(&global_added_lock);
if (global_added_by_data != NULL) {
ASN1_OBJECT *match;
match = lh_ASN1_OBJECT_retrieve(global_added_by_data, obj);
if (match != NULL) {
CRYPTO_STATIC_MUTEX_unlock_read(&global_added_lock);
return match->nid;
}
}
CRYPTO_STATIC_MUTEX_unlock_read(&global_added_lock);
nid_ptr = bsearch(obj, kNIDsInOIDOrder, OPENSSL_ARRAY_SIZE(kNIDsInOIDOrder),
sizeof(kNIDsInOIDOrder[0]), obj_cmp);
if (nid_ptr == NULL) {
return NID_undef;
}
return kObjects[*nid_ptr].nid;
}
int OBJ_cbs2nid(const CBS *cbs) {
if (CBS_len(cbs) > INT_MAX) {
return NID_undef;
}
ASN1_OBJECT obj;
OPENSSL_memset(&obj, 0, sizeof(obj));
obj.data = CBS_data(cbs);
obj.length = (int)CBS_len(cbs);
return OBJ_obj2nid(&obj);
}
// short_name_cmp is called to search the kNIDsInShortNameOrder array. The
// |key| argument is name that we're looking for and |element| is a pointer to
// an unsigned int in the array.
static int short_name_cmp(const void *key, const void *element) {
const char *name = (const char *) key;
unsigned nid = *((unsigned*) element);
return strcmp(name, kObjects[nid].sn);
}
int OBJ_sn2nid(const char *short_name) {
const unsigned int *nid_ptr;
CRYPTO_STATIC_MUTEX_lock_read(&global_added_lock);
if (global_added_by_short_name != NULL) {
ASN1_OBJECT *match, template;
template.sn = short_name;
match = lh_ASN1_OBJECT_retrieve(global_added_by_short_name, &template);
if (match != NULL) {
CRYPTO_STATIC_MUTEX_unlock_read(&global_added_lock);
return match->nid;
}
}
CRYPTO_STATIC_MUTEX_unlock_read(&global_added_lock);
nid_ptr = bsearch(short_name, kNIDsInShortNameOrder,
OPENSSL_ARRAY_SIZE(kNIDsInShortNameOrder),
sizeof(kNIDsInShortNameOrder[0]), short_name_cmp);
if (nid_ptr == NULL) {
return NID_undef;
}
return kObjects[*nid_ptr].nid;
}
// long_name_cmp is called to search the kNIDsInLongNameOrder array. The
// |key| argument is name that we're looking for and |element| is a pointer to
// an unsigned int in the array.
static int long_name_cmp(const void *key, const void *element) {
const char *name = (const char *) key;
unsigned nid = *((unsigned*) element);
return strcmp(name, kObjects[nid].ln);
}
int OBJ_ln2nid(const char *long_name) {
const unsigned int *nid_ptr;
CRYPTO_STATIC_MUTEX_lock_read(&global_added_lock);
if (global_added_by_long_name != NULL) {
ASN1_OBJECT *match, template;
template.ln = long_name;
match = lh_ASN1_OBJECT_retrieve(global_added_by_long_name, &template);
if (match != NULL) {
CRYPTO_STATIC_MUTEX_unlock_read(&global_added_lock);
return match->nid;
}
}
CRYPTO_STATIC_MUTEX_unlock_read(&global_added_lock);
nid_ptr = bsearch(long_name, kNIDsInLongNameOrder,
OPENSSL_ARRAY_SIZE(kNIDsInLongNameOrder),
sizeof(kNIDsInLongNameOrder[0]), long_name_cmp);
if (nid_ptr == NULL) {
return NID_undef;
}
return kObjects[*nid_ptr].nid;
}
int OBJ_txt2nid(const char *s) {
ASN1_OBJECT *obj;
int nid;
obj = OBJ_txt2obj(s, 0 /* search names */);
nid = OBJ_obj2nid(obj);
ASN1_OBJECT_free(obj);
return nid;
}
OPENSSL_EXPORT int OBJ_nid2cbb(CBB *out, int nid) {
const ASN1_OBJECT *obj = OBJ_nid2obj(nid);
CBB oid;
if (obj == NULL ||
!CBB_add_asn1(out, &oid, CBS_ASN1_OBJECT) ||
!CBB_add_bytes(&oid, obj->data, obj->length) ||
!CBB_flush(out)) {
return 0;
}
return 1;
}
const ASN1_OBJECT *OBJ_nid2obj(int nid) {
if (nid >= 0 && nid < NUM_NID) {
if (nid != NID_undef && kObjects[nid].nid == NID_undef) {
goto err;
}
return &kObjects[nid];
}
CRYPTO_STATIC_MUTEX_lock_read(&global_added_lock);
if (global_added_by_nid != NULL) {
ASN1_OBJECT *match, template;
template.nid = nid;
match = lh_ASN1_OBJECT_retrieve(global_added_by_nid, &template);
if (match != NULL) {
CRYPTO_STATIC_MUTEX_unlock_read(&global_added_lock);
return match;
}
}
CRYPTO_STATIC_MUTEX_unlock_read(&global_added_lock);
err:
OPENSSL_PUT_ERROR(OBJ, OBJ_R_UNKNOWN_NID);
return NULL;
}
const char *OBJ_nid2sn(int nid) {
const ASN1_OBJECT *obj = OBJ_nid2obj(nid);
if (obj == NULL) {
return NULL;
}
return obj->sn;
}
const char *OBJ_nid2ln(int nid) {
const ASN1_OBJECT *obj = OBJ_nid2obj(nid);
if (obj == NULL) {
return NULL;
}
return obj->ln;
}
static ASN1_OBJECT *create_object_with_text_oid(int (*get_nid)(void),
const char *oid,
const char *short_name,
const char *long_name) {
uint8_t *buf;
size_t len;
CBB cbb;
if (!CBB_init(&cbb, 32) ||
!CBB_add_asn1_oid_from_text(&cbb, oid, strlen(oid)) ||
!CBB_finish(&cbb, &buf, &len)) {
OPENSSL_PUT_ERROR(OBJ, OBJ_R_INVALID_OID_STRING);
CBB_cleanup(&cbb);
return NULL;
}
ASN1_OBJECT *ret = ASN1_OBJECT_create(get_nid ? get_nid() : NID_undef, buf,
len, short_name, long_name);
OPENSSL_free(buf);
return ret;
}
ASN1_OBJECT *OBJ_txt2obj(const char *s, int dont_search_names) {
if (!dont_search_names) {
int nid = OBJ_sn2nid(s);
if (nid == NID_undef) {
nid = OBJ_ln2nid(s);
}
if (nid != NID_undef) {
return (ASN1_OBJECT*) OBJ_nid2obj(nid);
}
}
return create_object_with_text_oid(NULL, s, NULL, NULL);
}
static int strlcpy_int(char *dst, const char *src, int dst_size) {
size_t ret = BUF_strlcpy(dst, src, dst_size < 0 ? 0 : (size_t)dst_size);
if (ret > INT_MAX) {
OPENSSL_PUT_ERROR(OBJ, ERR_R_OVERFLOW);
return -1;
}
return (int)ret;
}
static int parse_oid_component(CBS *cbs, uint64_t *out) {
uint64_t v = 0;
uint8_t b;
do {
if (!CBS_get_u8(cbs, &b)) {
return 0;
}
if ((v >> (64 - 7)) != 0) {
// The component is too large.
return 0;
}
if (v == 0 && b == 0x80) {
// The component must be minimally encoded.
return 0;
}
v = (v << 7) | (b & 0x7f);
// Components end at an octet with the high bit cleared.
} while (b & 0x80);
*out = v;
return 1;
}
static int add_decimal(CBB *out, uint64_t v) {
char buf[DECIMAL_SIZE(uint64_t) + 1];
BIO_snprintf(buf, sizeof(buf), "%" PRIu64, v);
return CBB_add_bytes(out, (const uint8_t *)buf, strlen(buf));
}
int OBJ_obj2txt(char *out, int out_len, const ASN1_OBJECT *obj,
int always_return_oid) {
// Python depends on the empty OID successfully encoding as the empty
// string.
if (obj == NULL || obj->length == 0) {
return strlcpy_int(out, "", out_len);
}
if (!always_return_oid) {
int nid = OBJ_obj2nid(obj);
if (nid != NID_undef) {
const char *name = OBJ_nid2ln(nid);
if (name == NULL) {
name = OBJ_nid2sn(nid);
}
if (name != NULL) {
return strlcpy_int(out, name, out_len);
}
}
}
CBB cbb;
if (!CBB_init(&cbb, 32)) {
goto err;
}
CBS cbs;
CBS_init(&cbs, obj->data, obj->length);
// The first component is 40 * value1 + value2, where value1 is 0, 1, or 2.
uint64_t v;
if (!parse_oid_component(&cbs, &v)) {
goto err;
}
if (v >= 80) {
if (!CBB_add_bytes(&cbb, (const uint8_t *)"2.", 2) ||
!add_decimal(&cbb, v - 80)) {
goto err;
}
} else if (!add_decimal(&cbb, v / 40) ||
!CBB_add_u8(&cbb, '.') ||
!add_decimal(&cbb, v % 40)) {
goto err;
}
while (CBS_len(&cbs) != 0) {
if (!parse_oid_component(&cbs, &v) ||
!CBB_add_u8(&cbb, '.') ||
!add_decimal(&cbb, v)) {
goto err;
}
}
uint8_t *txt;
size_t txt_len;
if (!CBB_add_u8(&cbb, '\0') ||
!CBB_finish(&cbb, &txt, &txt_len)) {
goto err;
}
int ret = strlcpy_int(out, (const char *)txt, out_len);
OPENSSL_free(txt);
return ret;
err:
CBB_cleanup(&cbb);
if (out_len > 0) {
out[0] = '\0';
}
return -1;
}
static uint32_t hash_nid(const ASN1_OBJECT *obj) {
return obj->nid;
}
static int cmp_nid(const ASN1_OBJECT *a, const ASN1_OBJECT *b) {
return a->nid - b->nid;
}
static uint32_t hash_data(const ASN1_OBJECT *obj) {
return OPENSSL_hash32(obj->data, obj->length);
}
static int cmp_data(const ASN1_OBJECT *a, const ASN1_OBJECT *b) {
int i = a->length - b->length;
if (i) {
return i;
}
return OPENSSL_memcmp(a->data, b->data, a->length);
}
static uint32_t hash_short_name(const ASN1_OBJECT *obj) {
return lh_strhash(obj->sn);
}
static int cmp_short_name(const ASN1_OBJECT *a, const ASN1_OBJECT *b) {
return strcmp(a->sn, b->sn);
}
static uint32_t hash_long_name(const ASN1_OBJECT *obj) {
return lh_strhash(obj->ln);
}
static int cmp_long_name(const ASN1_OBJECT *a, const ASN1_OBJECT *b) {
return strcmp(a->ln, b->ln);
}
// obj_add_object inserts |obj| into the various global hashes for run-time
// added objects. It returns one on success or zero otherwise.
static int obj_add_object(ASN1_OBJECT *obj) {
int ok;
ASN1_OBJECT *old_object;
obj->flags &= ~(ASN1_OBJECT_FLAG_DYNAMIC | ASN1_OBJECT_FLAG_DYNAMIC_STRINGS |
ASN1_OBJECT_FLAG_DYNAMIC_DATA);
CRYPTO_STATIC_MUTEX_lock_write(&global_added_lock);
if (global_added_by_nid == NULL) {
global_added_by_nid = lh_ASN1_OBJECT_new(hash_nid, cmp_nid);
global_added_by_data = lh_ASN1_OBJECT_new(hash_data, cmp_data);
global_added_by_short_name = lh_ASN1_OBJECT_new(hash_short_name, cmp_short_name);
global_added_by_long_name = lh_ASN1_OBJECT_new(hash_long_name, cmp_long_name);
}
// We don't pay attention to |old_object| (which contains any previous object
// that was evicted from the hashes) because we don't have a reference count
// on ASN1_OBJECT values. Also, we should never have duplicates nids and so
// should always have objects in |global_added_by_nid|.
ok = lh_ASN1_OBJECT_insert(global_added_by_nid, &old_object, obj);
if (obj->length != 0 && obj->data != NULL) {
ok &= lh_ASN1_OBJECT_insert(global_added_by_data, &old_object, obj);
}
if (obj->sn != NULL) {
ok &= lh_ASN1_OBJECT_insert(global_added_by_short_name, &old_object, obj);
}
if (obj->ln != NULL) {
ok &= lh_ASN1_OBJECT_insert(global_added_by_long_name, &old_object, obj);
}
CRYPTO_STATIC_MUTEX_unlock_write(&global_added_lock);
return ok;
}
int OBJ_create(const char *oid, const char *short_name, const char *long_name) {
ASN1_OBJECT *op =
create_object_with_text_oid(obj_next_nid, oid, short_name, long_name);
if (op == NULL ||
!obj_add_object(op)) {
return NID_undef;
}
return op->nid;
}