47b8f00fdc
OBJ_txt2obj is currently implemented using BIGNUMs which is absurd. It also depends on the giant OID table, which is undesirable. Write a new one and expose the low-level function so Chromium can use it without the OID table. Bug: chromium:706445 Change-Id: I61ff750a914194f8776cb8d81ba5d3eb5eaa3c3d Reviewed-on: https://boringssl-review.googlesource.com/23364 Commit-Queue: David Benjamin <davidben@google.com> CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org> Reviewed-by: Steven Valdez <svaldez@google.com>
622 lines
17 KiB
C
622 lines
17 KiB
C
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
|
|
* All rights reserved.
|
|
*
|
|
* This package is an SSL implementation written
|
|
* by Eric Young (eay@cryptsoft.com).
|
|
* The implementation was written so as to conform with Netscapes SSL.
|
|
*
|
|
* This library is free for commercial and non-commercial use as long as
|
|
* the following conditions are aheared to. The following conditions
|
|
* apply to all code found in this distribution, be it the RC4, RSA,
|
|
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
|
|
* included with this distribution is covered by the same copyright terms
|
|
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
|
|
*
|
|
* Copyright remains Eric Young's, and as such any Copyright notices in
|
|
* the code are not to be removed.
|
|
* If this package is used in a product, Eric Young should be given attribution
|
|
* as the author of the parts of the library used.
|
|
* This can be in the form of a textual message at program startup or
|
|
* in documentation (online or textual) provided with the package.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* "This product includes cryptographic software written by
|
|
* Eric Young (eay@cryptsoft.com)"
|
|
* The word 'cryptographic' can be left out if the rouines from the library
|
|
* being used are not cryptographic related :-).
|
|
* 4. If you include any Windows specific code (or a derivative thereof) from
|
|
* the apps directory (application code) you must include an acknowledgement:
|
|
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* The licence and distribution terms for any publically available version or
|
|
* derivative of this code cannot be changed. i.e. this code cannot simply be
|
|
* copied and put under another distribution licence
|
|
* [including the GNU Public Licence.] */
|
|
|
|
#if !defined(__STDC_FORMAT_MACROS)
|
|
#define __STDC_FORMAT_MACROS
|
|
#endif
|
|
|
|
#include <openssl/obj.h>
|
|
|
|
#include <inttypes.h>
|
|
#include <limits.h>
|
|
#include <string.h>
|
|
|
|
#include <openssl/asn1.h>
|
|
#include <openssl/buf.h>
|
|
#include <openssl/bytestring.h>
|
|
#include <openssl/err.h>
|
|
#include <openssl/lhash.h>
|
|
#include <openssl/mem.h>
|
|
#include <openssl/thread.h>
|
|
|
|
#include "obj_dat.h"
|
|
#include "../internal.h"
|
|
|
|
|
|
static struct CRYPTO_STATIC_MUTEX global_added_lock = CRYPTO_STATIC_MUTEX_INIT;
|
|
// These globals are protected by |global_added_lock|.
|
|
static LHASH_OF(ASN1_OBJECT) *global_added_by_data = NULL;
|
|
static LHASH_OF(ASN1_OBJECT) *global_added_by_nid = NULL;
|
|
static LHASH_OF(ASN1_OBJECT) *global_added_by_short_name = NULL;
|
|
static LHASH_OF(ASN1_OBJECT) *global_added_by_long_name = NULL;
|
|
|
|
static struct CRYPTO_STATIC_MUTEX global_next_nid_lock =
|
|
CRYPTO_STATIC_MUTEX_INIT;
|
|
static unsigned global_next_nid = NUM_NID;
|
|
|
|
static int obj_next_nid(void) {
|
|
int ret;
|
|
|
|
CRYPTO_STATIC_MUTEX_lock_write(&global_next_nid_lock);
|
|
ret = global_next_nid++;
|
|
CRYPTO_STATIC_MUTEX_unlock_write(&global_next_nid_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
ASN1_OBJECT *OBJ_dup(const ASN1_OBJECT *o) {
|
|
ASN1_OBJECT *r;
|
|
unsigned char *data = NULL;
|
|
char *sn = NULL, *ln = NULL;
|
|
|
|
if (o == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
if (!(o->flags & ASN1_OBJECT_FLAG_DYNAMIC)) {
|
|
// TODO(fork): this is a little dangerous.
|
|
return (ASN1_OBJECT *)o;
|
|
}
|
|
|
|
r = ASN1_OBJECT_new();
|
|
if (r == NULL) {
|
|
OPENSSL_PUT_ERROR(OBJ, ERR_R_ASN1_LIB);
|
|
return NULL;
|
|
}
|
|
r->ln = r->sn = NULL;
|
|
|
|
data = OPENSSL_malloc(o->length);
|
|
if (data == NULL) {
|
|
goto err;
|
|
}
|
|
if (o->data != NULL) {
|
|
OPENSSL_memcpy(data, o->data, o->length);
|
|
}
|
|
|
|
// once data is attached to an object, it remains const
|
|
r->data = data;
|
|
r->length = o->length;
|
|
r->nid = o->nid;
|
|
|
|
if (o->ln != NULL) {
|
|
ln = OPENSSL_strdup(o->ln);
|
|
if (ln == NULL) {
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
if (o->sn != NULL) {
|
|
sn = OPENSSL_strdup(o->sn);
|
|
if (sn == NULL) {
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
r->sn = sn;
|
|
r->ln = ln;
|
|
|
|
r->flags =
|
|
o->flags | (ASN1_OBJECT_FLAG_DYNAMIC | ASN1_OBJECT_FLAG_DYNAMIC_STRINGS |
|
|
ASN1_OBJECT_FLAG_DYNAMIC_DATA);
|
|
return r;
|
|
|
|
err:
|
|
OPENSSL_PUT_ERROR(OBJ, ERR_R_MALLOC_FAILURE);
|
|
OPENSSL_free(ln);
|
|
OPENSSL_free(sn);
|
|
OPENSSL_free(data);
|
|
OPENSSL_free(r);
|
|
return NULL;
|
|
}
|
|
|
|
int OBJ_cmp(const ASN1_OBJECT *a, const ASN1_OBJECT *b) {
|
|
int ret;
|
|
|
|
ret = a->length - b->length;
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
return OPENSSL_memcmp(a->data, b->data, a->length);
|
|
}
|
|
|
|
const uint8_t *OBJ_get0_data(const ASN1_OBJECT *obj) {
|
|
if (obj == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
return obj->data;
|
|
}
|
|
|
|
size_t OBJ_length(const ASN1_OBJECT *obj) {
|
|
if (obj == NULL || obj->length < 0) {
|
|
return 0;
|
|
}
|
|
|
|
return (size_t)obj->length;
|
|
}
|
|
|
|
// obj_cmp is called to search the kNIDsInOIDOrder array. The |key| argument is
|
|
// an |ASN1_OBJECT|* that we're looking for and |element| is a pointer to an
|
|
// unsigned int in the array.
|
|
static int obj_cmp(const void *key, const void *element) {
|
|
unsigned nid = *((const unsigned*) element);
|
|
const ASN1_OBJECT *a = key;
|
|
const ASN1_OBJECT *b = &kObjects[nid];
|
|
|
|
if (a->length < b->length) {
|
|
return -1;
|
|
} else if (a->length > b->length) {
|
|
return 1;
|
|
}
|
|
return OPENSSL_memcmp(a->data, b->data, a->length);
|
|
}
|
|
|
|
int OBJ_obj2nid(const ASN1_OBJECT *obj) {
|
|
const unsigned int *nid_ptr;
|
|
|
|
if (obj == NULL) {
|
|
return NID_undef;
|
|
}
|
|
|
|
if (obj->nid != 0) {
|
|
return obj->nid;
|
|
}
|
|
|
|
CRYPTO_STATIC_MUTEX_lock_read(&global_added_lock);
|
|
if (global_added_by_data != NULL) {
|
|
ASN1_OBJECT *match;
|
|
|
|
match = lh_ASN1_OBJECT_retrieve(global_added_by_data, obj);
|
|
if (match != NULL) {
|
|
CRYPTO_STATIC_MUTEX_unlock_read(&global_added_lock);
|
|
return match->nid;
|
|
}
|
|
}
|
|
CRYPTO_STATIC_MUTEX_unlock_read(&global_added_lock);
|
|
|
|
nid_ptr = bsearch(obj, kNIDsInOIDOrder, OPENSSL_ARRAY_SIZE(kNIDsInOIDOrder),
|
|
sizeof(kNIDsInOIDOrder[0]), obj_cmp);
|
|
if (nid_ptr == NULL) {
|
|
return NID_undef;
|
|
}
|
|
|
|
return kObjects[*nid_ptr].nid;
|
|
}
|
|
|
|
int OBJ_cbs2nid(const CBS *cbs) {
|
|
if (CBS_len(cbs) > INT_MAX) {
|
|
return NID_undef;
|
|
}
|
|
|
|
ASN1_OBJECT obj;
|
|
OPENSSL_memset(&obj, 0, sizeof(obj));
|
|
obj.data = CBS_data(cbs);
|
|
obj.length = (int)CBS_len(cbs);
|
|
|
|
return OBJ_obj2nid(&obj);
|
|
}
|
|
|
|
// short_name_cmp is called to search the kNIDsInShortNameOrder array. The
|
|
// |key| argument is name that we're looking for and |element| is a pointer to
|
|
// an unsigned int in the array.
|
|
static int short_name_cmp(const void *key, const void *element) {
|
|
const char *name = (const char *) key;
|
|
unsigned nid = *((unsigned*) element);
|
|
|
|
return strcmp(name, kObjects[nid].sn);
|
|
}
|
|
|
|
int OBJ_sn2nid(const char *short_name) {
|
|
const unsigned int *nid_ptr;
|
|
|
|
CRYPTO_STATIC_MUTEX_lock_read(&global_added_lock);
|
|
if (global_added_by_short_name != NULL) {
|
|
ASN1_OBJECT *match, template;
|
|
|
|
template.sn = short_name;
|
|
match = lh_ASN1_OBJECT_retrieve(global_added_by_short_name, &template);
|
|
if (match != NULL) {
|
|
CRYPTO_STATIC_MUTEX_unlock_read(&global_added_lock);
|
|
return match->nid;
|
|
}
|
|
}
|
|
CRYPTO_STATIC_MUTEX_unlock_read(&global_added_lock);
|
|
|
|
nid_ptr = bsearch(short_name, kNIDsInShortNameOrder,
|
|
OPENSSL_ARRAY_SIZE(kNIDsInShortNameOrder),
|
|
sizeof(kNIDsInShortNameOrder[0]), short_name_cmp);
|
|
if (nid_ptr == NULL) {
|
|
return NID_undef;
|
|
}
|
|
|
|
return kObjects[*nid_ptr].nid;
|
|
}
|
|
|
|
// long_name_cmp is called to search the kNIDsInLongNameOrder array. The
|
|
// |key| argument is name that we're looking for and |element| is a pointer to
|
|
// an unsigned int in the array.
|
|
static int long_name_cmp(const void *key, const void *element) {
|
|
const char *name = (const char *) key;
|
|
unsigned nid = *((unsigned*) element);
|
|
|
|
return strcmp(name, kObjects[nid].ln);
|
|
}
|
|
|
|
int OBJ_ln2nid(const char *long_name) {
|
|
const unsigned int *nid_ptr;
|
|
|
|
CRYPTO_STATIC_MUTEX_lock_read(&global_added_lock);
|
|
if (global_added_by_long_name != NULL) {
|
|
ASN1_OBJECT *match, template;
|
|
|
|
template.ln = long_name;
|
|
match = lh_ASN1_OBJECT_retrieve(global_added_by_long_name, &template);
|
|
if (match != NULL) {
|
|
CRYPTO_STATIC_MUTEX_unlock_read(&global_added_lock);
|
|
return match->nid;
|
|
}
|
|
}
|
|
CRYPTO_STATIC_MUTEX_unlock_read(&global_added_lock);
|
|
|
|
nid_ptr = bsearch(long_name, kNIDsInLongNameOrder,
|
|
OPENSSL_ARRAY_SIZE(kNIDsInLongNameOrder),
|
|
sizeof(kNIDsInLongNameOrder[0]), long_name_cmp);
|
|
if (nid_ptr == NULL) {
|
|
return NID_undef;
|
|
}
|
|
|
|
return kObjects[*nid_ptr].nid;
|
|
}
|
|
|
|
int OBJ_txt2nid(const char *s) {
|
|
ASN1_OBJECT *obj;
|
|
int nid;
|
|
|
|
obj = OBJ_txt2obj(s, 0 /* search names */);
|
|
nid = OBJ_obj2nid(obj);
|
|
ASN1_OBJECT_free(obj);
|
|
return nid;
|
|
}
|
|
|
|
OPENSSL_EXPORT int OBJ_nid2cbb(CBB *out, int nid) {
|
|
const ASN1_OBJECT *obj = OBJ_nid2obj(nid);
|
|
CBB oid;
|
|
|
|
if (obj == NULL ||
|
|
!CBB_add_asn1(out, &oid, CBS_ASN1_OBJECT) ||
|
|
!CBB_add_bytes(&oid, obj->data, obj->length) ||
|
|
!CBB_flush(out)) {
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
const ASN1_OBJECT *OBJ_nid2obj(int nid) {
|
|
if (nid >= 0 && nid < NUM_NID) {
|
|
if (nid != NID_undef && kObjects[nid].nid == NID_undef) {
|
|
goto err;
|
|
}
|
|
return &kObjects[nid];
|
|
}
|
|
|
|
CRYPTO_STATIC_MUTEX_lock_read(&global_added_lock);
|
|
if (global_added_by_nid != NULL) {
|
|
ASN1_OBJECT *match, template;
|
|
|
|
template.nid = nid;
|
|
match = lh_ASN1_OBJECT_retrieve(global_added_by_nid, &template);
|
|
if (match != NULL) {
|
|
CRYPTO_STATIC_MUTEX_unlock_read(&global_added_lock);
|
|
return match;
|
|
}
|
|
}
|
|
CRYPTO_STATIC_MUTEX_unlock_read(&global_added_lock);
|
|
|
|
err:
|
|
OPENSSL_PUT_ERROR(OBJ, OBJ_R_UNKNOWN_NID);
|
|
return NULL;
|
|
}
|
|
|
|
const char *OBJ_nid2sn(int nid) {
|
|
const ASN1_OBJECT *obj = OBJ_nid2obj(nid);
|
|
if (obj == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
return obj->sn;
|
|
}
|
|
|
|
const char *OBJ_nid2ln(int nid) {
|
|
const ASN1_OBJECT *obj = OBJ_nid2obj(nid);
|
|
if (obj == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
return obj->ln;
|
|
}
|
|
|
|
static ASN1_OBJECT *create_object_with_text_oid(int (*get_nid)(void),
|
|
const char *oid,
|
|
const char *short_name,
|
|
const char *long_name) {
|
|
uint8_t *buf;
|
|
size_t len;
|
|
CBB cbb;
|
|
if (!CBB_init(&cbb, 32) ||
|
|
!CBB_add_asn1_oid_from_text(&cbb, oid, strlen(oid)) ||
|
|
!CBB_finish(&cbb, &buf, &len)) {
|
|
OPENSSL_PUT_ERROR(OBJ, OBJ_R_INVALID_OID_STRING);
|
|
CBB_cleanup(&cbb);
|
|
return NULL;
|
|
}
|
|
|
|
ASN1_OBJECT *ret = ASN1_OBJECT_create(get_nid ? get_nid() : NID_undef, buf,
|
|
len, short_name, long_name);
|
|
OPENSSL_free(buf);
|
|
return ret;
|
|
}
|
|
|
|
ASN1_OBJECT *OBJ_txt2obj(const char *s, int dont_search_names) {
|
|
if (!dont_search_names) {
|
|
int nid = OBJ_sn2nid(s);
|
|
if (nid == NID_undef) {
|
|
nid = OBJ_ln2nid(s);
|
|
}
|
|
|
|
if (nid != NID_undef) {
|
|
return (ASN1_OBJECT*) OBJ_nid2obj(nid);
|
|
}
|
|
}
|
|
|
|
return create_object_with_text_oid(NULL, s, NULL, NULL);
|
|
}
|
|
|
|
static int strlcpy_int(char *dst, const char *src, int dst_size) {
|
|
size_t ret = BUF_strlcpy(dst, src, dst_size < 0 ? 0 : (size_t)dst_size);
|
|
if (ret > INT_MAX) {
|
|
OPENSSL_PUT_ERROR(OBJ, ERR_R_OVERFLOW);
|
|
return -1;
|
|
}
|
|
return (int)ret;
|
|
}
|
|
|
|
static int parse_oid_component(CBS *cbs, uint64_t *out) {
|
|
uint64_t v = 0;
|
|
uint8_t b;
|
|
do {
|
|
if (!CBS_get_u8(cbs, &b)) {
|
|
return 0;
|
|
}
|
|
if ((v >> (64 - 7)) != 0) {
|
|
// The component is too large.
|
|
return 0;
|
|
}
|
|
if (v == 0 && b == 0x80) {
|
|
// The component must be minimally encoded.
|
|
return 0;
|
|
}
|
|
v = (v << 7) | (b & 0x7f);
|
|
|
|
// Components end at an octet with the high bit cleared.
|
|
} while (b & 0x80);
|
|
|
|
*out = v;
|
|
return 1;
|
|
}
|
|
|
|
static int add_decimal(CBB *out, uint64_t v) {
|
|
char buf[DECIMAL_SIZE(uint64_t) + 1];
|
|
BIO_snprintf(buf, sizeof(buf), "%" PRIu64, v);
|
|
return CBB_add_bytes(out, (const uint8_t *)buf, strlen(buf));
|
|
}
|
|
|
|
int OBJ_obj2txt(char *out, int out_len, const ASN1_OBJECT *obj,
|
|
int always_return_oid) {
|
|
// Python depends on the empty OID successfully encoding as the empty
|
|
// string.
|
|
if (obj == NULL || obj->length == 0) {
|
|
return strlcpy_int(out, "", out_len);
|
|
}
|
|
|
|
if (!always_return_oid) {
|
|
int nid = OBJ_obj2nid(obj);
|
|
if (nid != NID_undef) {
|
|
const char *name = OBJ_nid2ln(nid);
|
|
if (name == NULL) {
|
|
name = OBJ_nid2sn(nid);
|
|
}
|
|
if (name != NULL) {
|
|
return strlcpy_int(out, name, out_len);
|
|
}
|
|
}
|
|
}
|
|
|
|
CBB cbb;
|
|
if (!CBB_init(&cbb, 32)) {
|
|
goto err;
|
|
}
|
|
|
|
CBS cbs;
|
|
CBS_init(&cbs, obj->data, obj->length);
|
|
|
|
// The first component is 40 * value1 + value2, where value1 is 0, 1, or 2.
|
|
uint64_t v;
|
|
if (!parse_oid_component(&cbs, &v)) {
|
|
goto err;
|
|
}
|
|
|
|
if (v >= 80) {
|
|
if (!CBB_add_bytes(&cbb, (const uint8_t *)"2.", 2) ||
|
|
!add_decimal(&cbb, v - 80)) {
|
|
goto err;
|
|
}
|
|
} else if (!add_decimal(&cbb, v / 40) ||
|
|
!CBB_add_u8(&cbb, '.') ||
|
|
!add_decimal(&cbb, v % 40)) {
|
|
goto err;
|
|
}
|
|
|
|
while (CBS_len(&cbs) != 0) {
|
|
if (!parse_oid_component(&cbs, &v) ||
|
|
!CBB_add_u8(&cbb, '.') ||
|
|
!add_decimal(&cbb, v)) {
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
uint8_t *txt;
|
|
size_t txt_len;
|
|
if (!CBB_add_u8(&cbb, '\0') ||
|
|
!CBB_finish(&cbb, &txt, &txt_len)) {
|
|
goto err;
|
|
}
|
|
|
|
int ret = strlcpy_int(out, (const char *)txt, out_len);
|
|
OPENSSL_free(txt);
|
|
return ret;
|
|
|
|
err:
|
|
CBB_cleanup(&cbb);
|
|
if (out_len > 0) {
|
|
out[0] = '\0';
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
static uint32_t hash_nid(const ASN1_OBJECT *obj) {
|
|
return obj->nid;
|
|
}
|
|
|
|
static int cmp_nid(const ASN1_OBJECT *a, const ASN1_OBJECT *b) {
|
|
return a->nid - b->nid;
|
|
}
|
|
|
|
static uint32_t hash_data(const ASN1_OBJECT *obj) {
|
|
return OPENSSL_hash32(obj->data, obj->length);
|
|
}
|
|
|
|
static int cmp_data(const ASN1_OBJECT *a, const ASN1_OBJECT *b) {
|
|
int i = a->length - b->length;
|
|
if (i) {
|
|
return i;
|
|
}
|
|
return OPENSSL_memcmp(a->data, b->data, a->length);
|
|
}
|
|
|
|
static uint32_t hash_short_name(const ASN1_OBJECT *obj) {
|
|
return lh_strhash(obj->sn);
|
|
}
|
|
|
|
static int cmp_short_name(const ASN1_OBJECT *a, const ASN1_OBJECT *b) {
|
|
return strcmp(a->sn, b->sn);
|
|
}
|
|
|
|
static uint32_t hash_long_name(const ASN1_OBJECT *obj) {
|
|
return lh_strhash(obj->ln);
|
|
}
|
|
|
|
static int cmp_long_name(const ASN1_OBJECT *a, const ASN1_OBJECT *b) {
|
|
return strcmp(a->ln, b->ln);
|
|
}
|
|
|
|
// obj_add_object inserts |obj| into the various global hashes for run-time
|
|
// added objects. It returns one on success or zero otherwise.
|
|
static int obj_add_object(ASN1_OBJECT *obj) {
|
|
int ok;
|
|
ASN1_OBJECT *old_object;
|
|
|
|
obj->flags &= ~(ASN1_OBJECT_FLAG_DYNAMIC | ASN1_OBJECT_FLAG_DYNAMIC_STRINGS |
|
|
ASN1_OBJECT_FLAG_DYNAMIC_DATA);
|
|
|
|
CRYPTO_STATIC_MUTEX_lock_write(&global_added_lock);
|
|
if (global_added_by_nid == NULL) {
|
|
global_added_by_nid = lh_ASN1_OBJECT_new(hash_nid, cmp_nid);
|
|
global_added_by_data = lh_ASN1_OBJECT_new(hash_data, cmp_data);
|
|
global_added_by_short_name = lh_ASN1_OBJECT_new(hash_short_name, cmp_short_name);
|
|
global_added_by_long_name = lh_ASN1_OBJECT_new(hash_long_name, cmp_long_name);
|
|
}
|
|
|
|
// We don't pay attention to |old_object| (which contains any previous object
|
|
// that was evicted from the hashes) because we don't have a reference count
|
|
// on ASN1_OBJECT values. Also, we should never have duplicates nids and so
|
|
// should always have objects in |global_added_by_nid|.
|
|
|
|
ok = lh_ASN1_OBJECT_insert(global_added_by_nid, &old_object, obj);
|
|
if (obj->length != 0 && obj->data != NULL) {
|
|
ok &= lh_ASN1_OBJECT_insert(global_added_by_data, &old_object, obj);
|
|
}
|
|
if (obj->sn != NULL) {
|
|
ok &= lh_ASN1_OBJECT_insert(global_added_by_short_name, &old_object, obj);
|
|
}
|
|
if (obj->ln != NULL) {
|
|
ok &= lh_ASN1_OBJECT_insert(global_added_by_long_name, &old_object, obj);
|
|
}
|
|
CRYPTO_STATIC_MUTEX_unlock_write(&global_added_lock);
|
|
|
|
return ok;
|
|
}
|
|
|
|
int OBJ_create(const char *oid, const char *short_name, const char *long_name) {
|
|
ASN1_OBJECT *op =
|
|
create_object_with_text_oid(obj_next_nid, oid, short_name, long_name);
|
|
if (op == NULL ||
|
|
!obj_add_object(op)) {
|
|
return NID_undef;
|
|
}
|
|
return op->nid;
|
|
}
|