306 lines
7.5 KiB
Go
306 lines
7.5 KiB
Go
|
// package newhope contains a post-quantum key agreement algorithm,
|
||
|
// reimplemented from the reference implementation at
|
||
|
// https://github.com/tpoeppelmann/newhope.
|
||
|
//
|
||
|
// Note that this package does not interoperate with the reference
|
||
|
// implementation.
|
||
|
package newhope
|
||
|
|
||
|
import (
|
||
|
"crypto/aes"
|
||
|
"crypto/cipher"
|
||
|
"errors"
|
||
|
"io"
|
||
|
)
|
||
|
|
||
|
const (
|
||
|
// q is the prime that defines the field.
|
||
|
q = 12289
|
||
|
// n is the number of coefficients in polynomials.
|
||
|
n = 1024
|
||
|
// k is the width of the noise distribution.
|
||
|
k = 16
|
||
|
|
||
|
// These values are used in the NTT calculation. See the paper for
|
||
|
// details about their origins.
|
||
|
omega = 49
|
||
|
invOmega = 1254
|
||
|
sqrtOmega = 7
|
||
|
invSqrtOmega = 8778
|
||
|
invN = 12277
|
||
|
|
||
|
// encodedPolyLen is the length, in bytes, of an encoded polynomial. The
|
||
|
// encoding uses 14 bits per coefficient.
|
||
|
encodedPolyLen = (n * 14) / 8
|
||
|
|
||
|
// offerMsgLen is the length, in bytes, of the offering (first) message of
|
||
|
// the key exchange.
|
||
|
OfferMsgLen = encodedPolyLen + 32
|
||
|
|
||
|
// acceptMsgLen is the length, in bytes, of the accepting (second) message
|
||
|
// of the key exchange.
|
||
|
AcceptMsgLen = encodedPolyLen + 256
|
||
|
)
|
||
|
|
||
|
// count16Bits returns the number of '1' bits in v.
|
||
|
func count16Bits(v uint16) (sum uint16) {
|
||
|
for i := 0; i < 16; i++ {
|
||
|
sum += v & 1
|
||
|
v >>= 1
|
||
|
}
|
||
|
|
||
|
return sum
|
||
|
}
|
||
|
|
||
|
// Poly is a polynomial of n coefficients.
|
||
|
type Poly [n]uint16
|
||
|
|
||
|
// Key is the result of a key agreement.
|
||
|
type Key [32]uint8
|
||
|
|
||
|
// sampleNoise returns a random polynomial where the coefficients are
|
||
|
// drawn from the noise distribution.
|
||
|
func sampleNoise(rand io.Reader) *Poly {
|
||
|
poly := new(Poly)
|
||
|
buf := make([]byte, 4)
|
||
|
|
||
|
for i := range poly {
|
||
|
if _, err := io.ReadFull(rand, buf); err != nil {
|
||
|
panic(err)
|
||
|
}
|
||
|
a := count16Bits(uint16(buf[0])<<8 | uint16(buf[1]))
|
||
|
b := count16Bits(uint16(buf[2])<<8 | uint16(buf[3]))
|
||
|
poly[i] = (q + a - b) % q
|
||
|
}
|
||
|
|
||
|
return poly
|
||
|
}
|
||
|
|
||
|
// randomPolynomial returns a random polynomial where the coefficients are
|
||
|
// drawn uniformly at random from the underlying field.
|
||
|
func randomPolynomial(rand io.Reader) *Poly {
|
||
|
poly := new(Poly)
|
||
|
|
||
|
buf := make([]byte, 2)
|
||
|
for i := range poly {
|
||
|
for {
|
||
|
if _, err := io.ReadFull(rand, buf); err != nil {
|
||
|
panic(err)
|
||
|
}
|
||
|
|
||
|
v := uint16(buf[1])<<8 | uint16(buf[0])
|
||
|
v &= 0x3fff
|
||
|
|
||
|
if v < q {
|
||
|
poly[i] = v
|
||
|
break
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return poly
|
||
|
}
|
||
|
|
||
|
type zeroReader struct {
|
||
|
io.Reader
|
||
|
}
|
||
|
|
||
|
func (z *zeroReader) Read(dst []byte) (n int, err error) {
|
||
|
for i := range dst {
|
||
|
dst[i] = 0
|
||
|
}
|
||
|
return len(dst), nil
|
||
|
}
|
||
|
|
||
|
// seedToPolynomial uses AES-CTR to generate a pseudo-random polynomial given a
|
||
|
// 32-byte seed.
|
||
|
func seedToPolynomial(seed []byte) *Poly {
|
||
|
aes, err := aes.NewCipher(seed[0:16])
|
||
|
if err != nil {
|
||
|
panic(err)
|
||
|
}
|
||
|
stream := cipher.NewCTR(aes, seed[16:32])
|
||
|
reader := &cipher.StreamReader{S: stream, R: &zeroReader{}}
|
||
|
return randomPolynomial(reader)
|
||
|
}
|
||
|
|
||
|
// forwardNTT converts |in| into the frequency domain.
|
||
|
func forwardNTT(in *Poly) *Poly {
|
||
|
return ntt(in, omega, sqrtOmega, 1, 1)
|
||
|
}
|
||
|
|
||
|
// inverseNTT converts |in| into the time domain.
|
||
|
func inverseNTT(in *Poly) *Poly {
|
||
|
return ntt(in, invOmega, 1, invSqrtOmega, invN)
|
||
|
}
|
||
|
|
||
|
// ntt performs the number-theoretic transform (a discrete Fourier transform in
|
||
|
// a field) on in. Significant magic is in effect here. See the paper for the
|
||
|
// details of how this works.
|
||
|
func ntt(in *Poly, omega, preScaleBase, postScaleBase, postScale uint16) *Poly {
|
||
|
out := new(Poly)
|
||
|
omega_to_the_i := 1
|
||
|
|
||
|
for i := range out {
|
||
|
omegaToTheIJ := 1
|
||
|
preScale := int(1)
|
||
|
sum := 0
|
||
|
|
||
|
for j := range in {
|
||
|
t := (int(in[j]) * preScale) % q
|
||
|
sum += (t * omegaToTheIJ) % q
|
||
|
omegaToTheIJ = (omegaToTheIJ * omega_to_the_i) % q
|
||
|
preScale = (int(preScaleBase) * preScale) % q
|
||
|
}
|
||
|
|
||
|
out[i] = uint16((sum * int(postScale)) % q)
|
||
|
|
||
|
omega_to_the_i = (omega_to_the_i * int(omega)) % q
|
||
|
postScale = uint16((int(postScale) * int(postScaleBase)) % q)
|
||
|
}
|
||
|
|
||
|
return out
|
||
|
}
|
||
|
|
||
|
// encodeRec encodes the reconciliation data compactly, for use in the accept
|
||
|
// message.
|
||
|
func encodeRec(rec *reconciliationData) []byte {
|
||
|
var ret [n / 4]byte
|
||
|
|
||
|
for i := 0; i < n/4; i++ {
|
||
|
ret[i] = rec[4*i] | rec[4*i+1]<<2 | rec[4*i+2]<<4 | rec[4*i+3]<<6
|
||
|
}
|
||
|
|
||
|
return ret[:]
|
||
|
}
|
||
|
|
||
|
// decodeRec decodes reconciliation data from the accept message.
|
||
|
func decodeRec(message []byte) (rec *reconciliationData) {
|
||
|
rec = new(reconciliationData)
|
||
|
|
||
|
for i, b := range message {
|
||
|
rec[4*i] = b & 0x03
|
||
|
rec[4*i+1] = (b >> 2) & 0x3
|
||
|
rec[4*i+2] = (b >> 4) & 0x3
|
||
|
rec[4*i+3] = b >> 6
|
||
|
}
|
||
|
|
||
|
return rec
|
||
|
}
|
||
|
|
||
|
// encodePoly returns a byte array that encodes a polynomial compactly, with 14
|
||
|
// bits per coefficient.
|
||
|
func encodePoly(poly *Poly) []byte {
|
||
|
ret := make([]byte, encodedPolyLen)
|
||
|
|
||
|
for i := 0; i < n/4; i++ {
|
||
|
t0 := poly[4*i]
|
||
|
t1 := poly[4*i+1]
|
||
|
t2 := poly[4*i+2]
|
||
|
t3 := poly[4*i+3]
|
||
|
|
||
|
ret[7*i] = byte(t0)
|
||
|
ret[7*i+1] = byte(t0>>8) | byte(t1<<6)
|
||
|
ret[7*i+2] = byte(t1 >> 2)
|
||
|
ret[7*i+3] = byte(t1>>10) | byte(t2<<4)
|
||
|
ret[7*i+4] = byte(t2 >> 4)
|
||
|
ret[7*i+5] = byte(t2>>12) | byte(t3<<2)
|
||
|
ret[7*i+6] = byte(t3 >> 6)
|
||
|
}
|
||
|
|
||
|
return ret
|
||
|
}
|
||
|
|
||
|
// decodePoly inverts encodePoly.
|
||
|
func decodePoly(encoded []byte) *Poly {
|
||
|
ret := new(Poly)
|
||
|
|
||
|
for i := 0; i < n/4; i++ {
|
||
|
ret[4*i] = uint16(encoded[7*i]) | uint16(encoded[7*i+1]&0x3f)<<8
|
||
|
ret[4*i+1] = uint16(encoded[7*i+1])>>6 | uint16(encoded[7*i+2])<<2 | uint16(encoded[7*i+3]&0x0f)<<10
|
||
|
ret[4*i+2] = uint16(encoded[7*i+3])>>4 | uint16(encoded[7*i+4])<<4 | uint16(encoded[7*i+5]&0x03)<<12
|
||
|
ret[4*i+3] = uint16(encoded[7*i+5])>>2 | uint16(encoded[7*i+6])<<6
|
||
|
}
|
||
|
|
||
|
return ret
|
||
|
}
|
||
|
|
||
|
// Offer starts a new key exchange. It returns a message that should be
|
||
|
// transmitted to the peer, and a polynomial that must be retained in order to
|
||
|
// complete the exchange.
|
||
|
func Offer(rand io.Reader) (offerMsg []byte, sFreq *Poly) {
|
||
|
seed := make([]byte, 32)
|
||
|
|
||
|
if _, err := io.ReadFull(rand, seed); err != nil {
|
||
|
panic(err)
|
||
|
}
|
||
|
|
||
|
aFreq := seedToPolynomial(seed)
|
||
|
sFreq = forwardNTT(sampleNoise(rand))
|
||
|
eFreq := forwardNTT(sampleNoise(rand))
|
||
|
|
||
|
bFreq := new(Poly)
|
||
|
for i := range bFreq {
|
||
|
bFreq[i] = uint16((int(sFreq[i])*int(aFreq[i]) + int(eFreq[i])) % q)
|
||
|
}
|
||
|
|
||
|
offerMsg = encodePoly(bFreq)
|
||
|
offerMsg = append(offerMsg, seed[:]...)
|
||
|
return offerMsg, sFreq
|
||
|
}
|
||
|
|
||
|
// Accept processes a message generated by |Offer| and returns a reply message
|
||
|
// and the shared key.
|
||
|
func Accept(rand io.Reader, offerMsg []byte) (sharedKey Key, acceptMsg []byte, err error) {
|
||
|
if len(offerMsg) != OfferMsgLen {
|
||
|
return sharedKey, nil, errors.New("newhope: offer message has incorrect length")
|
||
|
}
|
||
|
|
||
|
bFreq := decodePoly(offerMsg)
|
||
|
seed := offerMsg[encodedPolyLen:]
|
||
|
|
||
|
aFreq := seedToPolynomial(seed)
|
||
|
sPrimeFreq := forwardNTT(sampleNoise(rand))
|
||
|
ePrimeFreq := forwardNTT(sampleNoise(rand))
|
||
|
|
||
|
uFreq := new(Poly)
|
||
|
for i := range uFreq {
|
||
|
uFreq[i] = uint16((int(sPrimeFreq[i])*int(aFreq[i]) + int(ePrimeFreq[i])) % q)
|
||
|
}
|
||
|
|
||
|
vFreq := new(Poly)
|
||
|
for i := range vFreq {
|
||
|
vFreq[i] = uint16((int(sPrimeFreq[i]) * int(bFreq[i])) % q)
|
||
|
}
|
||
|
|
||
|
v := inverseNTT(vFreq)
|
||
|
ePrimePrime := sampleNoise(rand)
|
||
|
for i := range v {
|
||
|
v[i] = uint16((int(v[i]) + int(ePrimePrime[i])) % q)
|
||
|
}
|
||
|
|
||
|
rec := helprec(rand, v)
|
||
|
|
||
|
sharedKey = reconcile(v, rec)
|
||
|
acceptMsg = encodePoly(uFreq)
|
||
|
acceptMsg = append(acceptMsg, encodeRec(rec)[:]...)
|
||
|
return sharedKey, acceptMsg, nil
|
||
|
}
|
||
|
|
||
|
// Finish processes the reply from the peer and returns the shared key.
|
||
|
func (sk *Poly) Finish(acceptMsg []byte) (sharedKey Key, err error) {
|
||
|
if len(acceptMsg) != AcceptMsgLen {
|
||
|
return sharedKey, errors.New("newhope: accept message has incorrect length")
|
||
|
}
|
||
|
|
||
|
uFreq := decodePoly(acceptMsg[:encodedPolyLen])
|
||
|
rec := decodeRec(acceptMsg[encodedPolyLen:])
|
||
|
|
||
|
for i, u := range uFreq {
|
||
|
uFreq[i] = uint16((int(u) * int(sk[i])) % q)
|
||
|
}
|
||
|
u := inverseNTT(uFreq)
|
||
|
|
||
|
return reconcile(u, rec), nil
|
||
|
}
|