boringssl/ssl/test/runner/newhope/newhope.go
Matt Braithwaite c82b70155d Go version of New Hope post-quantum key exchange.
(Code mostly due to agl.)

Change-Id: Iec77396141954e5f8e845cc261eadab77f551f08
Reviewed-on: https://boringssl-review.googlesource.com/7990
Reviewed-by: Adam Langley <agl@google.com>
2016-05-18 22:30:20 +00:00

306 lines
7.5 KiB
Go

// package newhope contains a post-quantum key agreement algorithm,
// reimplemented from the reference implementation at
// https://github.com/tpoeppelmann/newhope.
//
// Note that this package does not interoperate with the reference
// implementation.
package newhope
import (
"crypto/aes"
"crypto/cipher"
"errors"
"io"
)
const (
// q is the prime that defines the field.
q = 12289
// n is the number of coefficients in polynomials.
n = 1024
// k is the width of the noise distribution.
k = 16
// These values are used in the NTT calculation. See the paper for
// details about their origins.
omega = 49
invOmega = 1254
sqrtOmega = 7
invSqrtOmega = 8778
invN = 12277
// encodedPolyLen is the length, in bytes, of an encoded polynomial. The
// encoding uses 14 bits per coefficient.
encodedPolyLen = (n * 14) / 8
// offerMsgLen is the length, in bytes, of the offering (first) message of
// the key exchange.
OfferMsgLen = encodedPolyLen + 32
// acceptMsgLen is the length, in bytes, of the accepting (second) message
// of the key exchange.
AcceptMsgLen = encodedPolyLen + 256
)
// count16Bits returns the number of '1' bits in v.
func count16Bits(v uint16) (sum uint16) {
for i := 0; i < 16; i++ {
sum += v & 1
v >>= 1
}
return sum
}
// Poly is a polynomial of n coefficients.
type Poly [n]uint16
// Key is the result of a key agreement.
type Key [32]uint8
// sampleNoise returns a random polynomial where the coefficients are
// drawn from the noise distribution.
func sampleNoise(rand io.Reader) *Poly {
poly := new(Poly)
buf := make([]byte, 4)
for i := range poly {
if _, err := io.ReadFull(rand, buf); err != nil {
panic(err)
}
a := count16Bits(uint16(buf[0])<<8 | uint16(buf[1]))
b := count16Bits(uint16(buf[2])<<8 | uint16(buf[3]))
poly[i] = (q + a - b) % q
}
return poly
}
// randomPolynomial returns a random polynomial where the coefficients are
// drawn uniformly at random from the underlying field.
func randomPolynomial(rand io.Reader) *Poly {
poly := new(Poly)
buf := make([]byte, 2)
for i := range poly {
for {
if _, err := io.ReadFull(rand, buf); err != nil {
panic(err)
}
v := uint16(buf[1])<<8 | uint16(buf[0])
v &= 0x3fff
if v < q {
poly[i] = v
break
}
}
}
return poly
}
type zeroReader struct {
io.Reader
}
func (z *zeroReader) Read(dst []byte) (n int, err error) {
for i := range dst {
dst[i] = 0
}
return len(dst), nil
}
// seedToPolynomial uses AES-CTR to generate a pseudo-random polynomial given a
// 32-byte seed.
func seedToPolynomial(seed []byte) *Poly {
aes, err := aes.NewCipher(seed[0:16])
if err != nil {
panic(err)
}
stream := cipher.NewCTR(aes, seed[16:32])
reader := &cipher.StreamReader{S: stream, R: &zeroReader{}}
return randomPolynomial(reader)
}
// forwardNTT converts |in| into the frequency domain.
func forwardNTT(in *Poly) *Poly {
return ntt(in, omega, sqrtOmega, 1, 1)
}
// inverseNTT converts |in| into the time domain.
func inverseNTT(in *Poly) *Poly {
return ntt(in, invOmega, 1, invSqrtOmega, invN)
}
// ntt performs the number-theoretic transform (a discrete Fourier transform in
// a field) on in. Significant magic is in effect here. See the paper for the
// details of how this works.
func ntt(in *Poly, omega, preScaleBase, postScaleBase, postScale uint16) *Poly {
out := new(Poly)
omega_to_the_i := 1
for i := range out {
omegaToTheIJ := 1
preScale := int(1)
sum := 0
for j := range in {
t := (int(in[j]) * preScale) % q
sum += (t * omegaToTheIJ) % q
omegaToTheIJ = (omegaToTheIJ * omega_to_the_i) % q
preScale = (int(preScaleBase) * preScale) % q
}
out[i] = uint16((sum * int(postScale)) % q)
omega_to_the_i = (omega_to_the_i * int(omega)) % q
postScale = uint16((int(postScale) * int(postScaleBase)) % q)
}
return out
}
// encodeRec encodes the reconciliation data compactly, for use in the accept
// message.
func encodeRec(rec *reconciliationData) []byte {
var ret [n / 4]byte
for i := 0; i < n/4; i++ {
ret[i] = rec[4*i] | rec[4*i+1]<<2 | rec[4*i+2]<<4 | rec[4*i+3]<<6
}
return ret[:]
}
// decodeRec decodes reconciliation data from the accept message.
func decodeRec(message []byte) (rec *reconciliationData) {
rec = new(reconciliationData)
for i, b := range message {
rec[4*i] = b & 0x03
rec[4*i+1] = (b >> 2) & 0x3
rec[4*i+2] = (b >> 4) & 0x3
rec[4*i+3] = b >> 6
}
return rec
}
// encodePoly returns a byte array that encodes a polynomial compactly, with 14
// bits per coefficient.
func encodePoly(poly *Poly) []byte {
ret := make([]byte, encodedPolyLen)
for i := 0; i < n/4; i++ {
t0 := poly[4*i]
t1 := poly[4*i+1]
t2 := poly[4*i+2]
t3 := poly[4*i+3]
ret[7*i] = byte(t0)
ret[7*i+1] = byte(t0>>8) | byte(t1<<6)
ret[7*i+2] = byte(t1 >> 2)
ret[7*i+3] = byte(t1>>10) | byte(t2<<4)
ret[7*i+4] = byte(t2 >> 4)
ret[7*i+5] = byte(t2>>12) | byte(t3<<2)
ret[7*i+6] = byte(t3 >> 6)
}
return ret
}
// decodePoly inverts encodePoly.
func decodePoly(encoded []byte) *Poly {
ret := new(Poly)
for i := 0; i < n/4; i++ {
ret[4*i] = uint16(encoded[7*i]) | uint16(encoded[7*i+1]&0x3f)<<8
ret[4*i+1] = uint16(encoded[7*i+1])>>6 | uint16(encoded[7*i+2])<<2 | uint16(encoded[7*i+3]&0x0f)<<10
ret[4*i+2] = uint16(encoded[7*i+3])>>4 | uint16(encoded[7*i+4])<<4 | uint16(encoded[7*i+5]&0x03)<<12
ret[4*i+3] = uint16(encoded[7*i+5])>>2 | uint16(encoded[7*i+6])<<6
}
return ret
}
// Offer starts a new key exchange. It returns a message that should be
// transmitted to the peer, and a polynomial that must be retained in order to
// complete the exchange.
func Offer(rand io.Reader) (offerMsg []byte, sFreq *Poly) {
seed := make([]byte, 32)
if _, err := io.ReadFull(rand, seed); err != nil {
panic(err)
}
aFreq := seedToPolynomial(seed)
sFreq = forwardNTT(sampleNoise(rand))
eFreq := forwardNTT(sampleNoise(rand))
bFreq := new(Poly)
for i := range bFreq {
bFreq[i] = uint16((int(sFreq[i])*int(aFreq[i]) + int(eFreq[i])) % q)
}
offerMsg = encodePoly(bFreq)
offerMsg = append(offerMsg, seed[:]...)
return offerMsg, sFreq
}
// Accept processes a message generated by |Offer| and returns a reply message
// and the shared key.
func Accept(rand io.Reader, offerMsg []byte) (sharedKey Key, acceptMsg []byte, err error) {
if len(offerMsg) != OfferMsgLen {
return sharedKey, nil, errors.New("newhope: offer message has incorrect length")
}
bFreq := decodePoly(offerMsg)
seed := offerMsg[encodedPolyLen:]
aFreq := seedToPolynomial(seed)
sPrimeFreq := forwardNTT(sampleNoise(rand))
ePrimeFreq := forwardNTT(sampleNoise(rand))
uFreq := new(Poly)
for i := range uFreq {
uFreq[i] = uint16((int(sPrimeFreq[i])*int(aFreq[i]) + int(ePrimeFreq[i])) % q)
}
vFreq := new(Poly)
for i := range vFreq {
vFreq[i] = uint16((int(sPrimeFreq[i]) * int(bFreq[i])) % q)
}
v := inverseNTT(vFreq)
ePrimePrime := sampleNoise(rand)
for i := range v {
v[i] = uint16((int(v[i]) + int(ePrimePrime[i])) % q)
}
rec := helprec(rand, v)
sharedKey = reconcile(v, rec)
acceptMsg = encodePoly(uFreq)
acceptMsg = append(acceptMsg, encodeRec(rec)[:]...)
return sharedKey, acceptMsg, nil
}
// Finish processes the reply from the peer and returns the shared key.
func (sk *Poly) Finish(acceptMsg []byte) (sharedKey Key, err error) {
if len(acceptMsg) != AcceptMsgLen {
return sharedKey, errors.New("newhope: accept message has incorrect length")
}
uFreq := decodePoly(acceptMsg[:encodedPolyLen])
rec := decodeRec(acceptMsg[encodedPolyLen:])
for i, u := range uFreq {
uFreq[i] = uint16((int(u) * int(sk[i])) % q)
}
u := inverseNTT(uFreq)
return reconcile(u, rec), nil
}