Otherwise, if the output BIGNUM was previously negative, we'd incorrectly give
a negative result. Thanks to Guide Vranken for reporting this issue!
Fortunately, this does not appear to come up in any existing caller. This isn't
all that surprising as negative numbers never really come up in cryptography.
Were it not for OpenSSL historically designing a calculator API, we'd just
delete the bit altogether. :-(
Bug: chromium:865924
Change-Id: I28fdc986dfaba3e38435b14ebf07453d537cc60a
Reviewed-on: https://boringssl-review.googlesource.com/29944
Commit-Queue: David Benjamin <davidben@google.com>
Commit-Queue: Adam Langley <agl@google.com>
Reviewed-by: Adam Langley <agl@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
This introduces EC_FELEM, which is analogous to EC_SCALAR. It is used
for EC_POINT's representation in the generic EC_METHOD, as well as
random operations on tuned EC_METHODs that still are implemented
genericly.
Unlike EC_SCALAR, EC_FELEM's exact representation is awkwardly specific
to the EC_METHOD, analogous to how the old values were BIGNUMs but may
or may not have been in Montgomery form. This is kind of a nuisance, but
no more than before. (If p224-64.c were easily convertable to Montgomery
form, we could say |EC_FELEM| is always in Montgomery form. If we
exposed the internal add and double implementations in each of the
curves, we could give |EC_POINT| an |EC_METHOD|-specific representation
and |EC_FELEM| is purely a |EC_GFp_mont_method| type. I'll leave this
for later.)
The generic add and doubling formulas are aligned with the formulas
proved in fiat-crypto. Those only applied to a = -3, so I've proved a
generic one in https://github.com/mit-plv/fiat-crypto/pull/356, in case
someone uses a custom curve. The new formulas are verified,
constant-time, and swap a multiply for a square. As expressed in
fiat-crypto they do use more temporaries, but this seems to be fine with
stack-allocated EC_FELEMs. (We can try to help the compiler later,
but benchamrks below suggest this isn't necessary.)
Unlike BIGNUM, EC_FELEM can be stack-allocated. It also captures the
bounds in the type system and, in particular, that the width is correct,
which will make it easier to select a point in constant-time in the
future. (Indeed the old code did not always have the correct width. Its
point formula involved halving and implemented this in variable time and
variable width.)
Before:
Did 77274 ECDH P-256 operations in 10046087us (7692.0 ops/sec)
Did 5959 ECDH P-384 operations in 10031701us (594.0 ops/sec)
Did 10815 ECDSA P-384 signing operations in 10087892us (1072.1 ops/sec)
Did 8976 ECDSA P-384 verify operations in 10071038us (891.3 ops/sec)
Did 2600 ECDH P-521 operations in 10091688us (257.6 ops/sec)
Did 4590 ECDSA P-521 signing operations in 10055195us (456.5 ops/sec)
Did 3811 ECDSA P-521 verify operations in 10003574us (381.0 ops/sec)
After:
Did 77736 ECDH P-256 operations in 10029858us (7750.5 ops/sec) [+0.8%]
Did 7519 ECDH P-384 operations in 10068076us (746.8 ops/sec) [+25.7%]
Did 13335 ECDSA P-384 signing operations in 10029962us (1329.5 ops/sec) [+24.0%]
Did 11021 ECDSA P-384 verify operations in 10088600us (1092.4 ops/sec) [+22.6%]
Did 2912 ECDH P-521 operations in 10001325us (291.2 ops/sec) [+13.0%]
Did 5150 ECDSA P-521 signing operations in 10027462us (513.6 ops/sec) [+12.5%]
Did 4264 ECDSA P-521 verify operations in 10069694us (423.4 ops/sec) [+11.1%]
This more than pays for removing points_make_affine previously and even
speeds up ECDH P-256 slightly. (The point-on-curve check uses the
generic code.)
Next is to push the stack-allocating up to ec_wNAF_mul, followed by a
constant-time single-point multiplication.
Bug: 239
Change-Id: I44a2dff7c52522e491d0f8cffff64c4ab5cd353c
Reviewed-on: https://boringssl-review.googlesource.com/27668
Reviewed-by: Adam Langley <agl@google.com>
ECDSA converts digests to scalars by taking the leftmost n bits, where n
is the number of bits in the group order. This does not necessarily
produce a fully-reduced scalar.
Montgomery multiplication actually tolerates this slightly looser bound,
so we did not bother with the conditional subtraction. However, this
subtraction is free compared to the multiplication, inversion, and base
point multiplication. Simplify things by keeping it fully-reduced.
Change-Id: If49dffefccc21510f40418dc52ea4da7e3ff198f
Reviewed-on: https://boringssl-review.googlesource.com/26968
Reviewed-by: Adam Langley <agl@google.com>
We do this in four different places, with the same long comment, and I'm
about to add yet another one.
Change-Id: If28e3f87ea71020d9b07b92e8947f3848473d99d
Reviewed-on: https://boringssl-review.googlesource.com/26964
Reviewed-by: Adam Langley <agl@google.com>
RSA key generation requires computing a GCD (p-1 and q-1 are relatively
prime with e) and an LCM (the Carmichael totient). I haven't made BN_gcd
itself constant-time here to save having to implement
bn_lshift_secret_shift, since the two necessary operations can be served
by bn_rshift_secret_shift, already added for Rabin-Miller. However, the
guts of BN_gcd are replaced. Otherwise, the new functions are only
connected to tests for now, they'll be used in subsequent CLs.
To support LCM, there is also now a constant-time division function.
This does not replace BN_div because bn_div_consttime is some 40x slower
than BN_div. That penalty is fine for RSA keygen because that operation
is not bottlenecked on division, so we prefer simplicity over
performance.
Median of 29 RSA keygens: 0m0.212s -> 0m0.225s
(Accuracy beyond 0.1s is questionable.)
Bug: 238
Change-Id: Idbfbfa6e7f5a3b8782ce227fa130417b3702cf97
Reviewed-on: https://boringssl-review.googlesource.com/26369
Reviewed-by: Adam Langley <alangley@gmail.com>
I'm not sure why I separated "fixed" and "quick_ctx" names. That's
annoying and doesn't generalize well to, say, adding a bn_div_consttime
function for RSA keygen.
Change-Id: I751d52b30e079de2f0d37a952de380fbf2c1e6b7
Reviewed-on: https://boringssl-review.googlesource.com/26364
Commit-Queue: David Benjamin <davidben@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
Reviewed-by: Adam Langley <agl@google.com>
Change-Id: I5fc029ceddfa60b2ccc97c138b94c1826f6d75fa
Reviewed-on: https://boringssl-review.googlesource.com/25844
Reviewed-by: David Benjamin <davidben@google.com>
Commit-Queue: David Benjamin <davidben@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
We still need BN_mul and, in particular, bn_mul_recursive will either
require bn_abs_sub_words be generalized or that we add a parallel
bn_abs_sub_part_words, but start with the easy one.
While I'm here, simplify the i and j mess in here. It's patterned after
the multiplication one, but can be much simpler.
Bug: 234
Change-Id: If936099d53304f2512262a1cbffb6c28ae30ccee
Reviewed-on: https://boringssl-review.googlesource.com/25325
Commit-Queue: David Benjamin <davidben@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
Reviewed-by: Adam Langley <agl@google.com>
As the EC code will ultimately want to use these in "words" form by way
of EC_FELEM, and because it's much easier, I've implement these as
low-level words-based functions that require all inputs have the same
width. The BIGNUM versions which RSA and, for now, EC calls are
implemented on top of that.
Unfortunately, doing such things in constant-time and accounting for
undersized inputs requires some scratch space, and these functions don't
take BN_CTX. So I've added internal bn_mod_*_quick_ctx functions that
take a BN_CTX and the old functions now allocate a bit unnecessarily.
RSA only needs lshift (for BN_MONT_CTX) and sub (for CRT), but the
generic EC code wants add as well.
The generic EC code isn't even remotely constant-time, and I hope to
ultimately use stack-allocated EC_FELEMs, so I've made the actual
implementations here implemented in "words", which is much simpler
anyway due to not having to take care of widths.
I've also gone ahead and switched the EC code to these functions,
largely as a test of their performance (an earlier iteration made the EC
code noticeably slower). These operations are otherwise not
performance-critical in RSA.
The conversion from BIGNUM to BIGNUM+BN_CTX should be dropped by the
static linker already, and the unused BIGNUM+BN_CTX functions will fall
off when EC_FELEM happens.
Update-Note: BN_mod_*_quick bounce on malloc a bit now, but they're not
really used externally. The one caller I found was wpa_supplicant
which bounces on malloc already. They appear to be implementing
compressed coordinates by hand? We may be able to convince them to
call EC_POINT_set_compressed_coordinates_GFp.
Bug: 233, 236
Change-Id: I2bf361e9c089e0211b97d95523dbc06f1168e12b
Reviewed-on: https://boringssl-review.googlesource.com/25261
Commit-Queue: David Benjamin <davidben@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
Reviewed-by: Adam Langley <agl@google.com>
This has no behavior change, but it has a semantic one. This CL is an
assertion that all BIGNUM functions tolerate non-minimal BIGNUMs now.
Specifically:
- Functions that do not touch top/width are assumed to not care.
- Functions that do touch top/width will be changed by this CL. These
should be checked in review that they tolerate non-minimal BIGNUMs.
Subsequent CLs will start adjusting the widths that BIGNUM functions
output, to fix timing leaks.
Bug: 232
Change-Id: I3a2b41b071f2174452f8d3801bce5c78947bb8f7
Reviewed-on: https://boringssl-review.googlesource.com/25257
Commit-Queue: David Benjamin <davidben@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
Reviewed-by: Adam Langley <agl@google.com>
Test this by re-running bn_tests.txt tests a lot. For the most part,
this was done by scattering bn_minimal_width or bn_correct_top calls as
needed. We'll incrementally tease apart the functions that need to act
on non-minimal BIGNUMs in constant-time.
BN_sqr was switched to call bn_correct_top at the end, rather than
sample bn_minimal_width, in anticipation of later splitting it into
BN_sqr (for calculators) and BN_sqr_fixed (for BN_mod_mul_montgomery).
BN_div_word also uses bn_correct_top because it calls BN_lshift so
officially shouldn't rely on BN_lshift returning something
minimal-width, though I expect we'd want to split off a BN_lshift_fixed
than change that anyway?
The shifts sample bn_minimal_width rather than bn_correct_top because
they all seem to try to be very clever around the bit width. If we need
constant-time versions of them, we can adjust them later.
Bug: 232
Change-Id: Ie17b39034a713542dbe906cf8954c0c5483c7db7
Reviewed-on: https://boringssl-review.googlesource.com/25255
Commit-Queue: David Benjamin <davidben@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
Reviewed-by: Adam Langley <agl@google.com>
It actually works fine. I just forgot one of the typedefs last time.
This gives a roughly 2x improvement on P-256 in clang-cl +
OPENSSL_SMALL, the configuration used by Chrome.
Before:
Did 1302 ECDH P-256 operations in 1015000us (1282.8 ops/sec)
Did 4250 ECDSA P-256 signing operations in 1047000us (4059.2 ops/sec)
Did 1750 ECDSA P-256 verify operations in 1094000us (1599.6 ops/sec)
After:
Did 3250 ECDH P-256 operations in 1078000us (3014.8 ops/sec)
Did 8250 ECDSA P-256 signing operations in 1016000us (8120.1 ops/sec)
Did 3250 ECDSA P-256 verify operations in 1063000us (3057.4 ops/sec)
(These were taken on a VM, so the measurements are extremely noisy, but
this sort of improvement is visible regardless.)
Alas, we do need a little extra bit of fiddling because division does
not work (crbug.com/787617).
Bug: chromium:787617
Update-Note: This removes the MSan uint128_t workaround which does not
appear to be necessary anymore.
Change-Id: I8361314608521e5bdaf0e7eeae7a02c33f55c69f
Reviewed-on: https://boringssl-review.googlesource.com/23984
Reviewed-by: Adam Langley <agl@google.com>
Commit-Queue: Adam Langley <agl@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
This is an OpenSSL thing to support platforms where BN_ULONG is not
actually the size it claims to be. We define BN_ULONG to uint32_t and
uint64_t which are guaranteed by C to implement arithemetic modulo 2^32
and 2^64, respectively. Thus there is no need for any of this.
Change-Id: I098cd4cc050a136b9f2c091dfbc28dd83e01f531
Reviewed-on: https://boringssl-review.googlesource.com/21784
Commit-Queue: Adam Langley <agl@google.com>
Reviewed-by: Adam Langley <agl@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
This reverts commit f6942f0d22.
Reason for revert: This doesn't actually work in clang-cl. I
forgot we didn't have the clang-cl try bots enabled! :-( I
believe __asm__ is still okay, but I'll try it by hand
tomorrow.
Original change's description:
> Use uint128_t and __asm__ in clang-cl.
>
> clang-cl does not define __GNUC__ but is still a functioning clang. We
> should be able to use our uint128_t and __asm__ code in it on Windows.
>
> Change-Id: I67310ee68baa0c0c947b2441c265b019ef12af7e
> Reviewed-on: https://boringssl-review.googlesource.com/22184
> Commit-Queue: Adam Langley <agl@google.com>
> Reviewed-by: Adam Langley <agl@google.com>
> CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
TBR=agl@google.com,davidben@google.com
Change-Id: I5c7e0391cd9c2e8cc0dfde37e174edaf5d17db22
No-Presubmit: true
No-Tree-Checks: true
No-Try: true
Reviewed-on: https://boringssl-review.googlesource.com/22224
Reviewed-by: David Benjamin <davidben@google.com>
Commit-Queue: David Benjamin <davidben@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
clang-cl does not define __GNUC__ but is still a functioning clang. We
should be able to use our uint128_t and __asm__ code in it on Windows.
Change-Id: I67310ee68baa0c0c947b2441c265b019ef12af7e
Reviewed-on: https://boringssl-review.googlesource.com/22184
Commit-Queue: Adam Langley <agl@google.com>
Reviewed-by: Adam Langley <agl@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
crypto/{asn1,x509,x509v3,pem} were skipped as they are still OpenSSL
style.
Change-Id: I3cd9a60e1cb483a981aca325041f3fbce294247c
Reviewed-on: https://boringssl-review.googlesource.com/19504
Reviewed-by: Adam Langley <agl@google.com>
Commit-Queue: David Benjamin <davidben@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>