764ab9802e
Previously we only needed to be able to serve P-224 certificates, but now we anticipate a need to be able to connect and validate them also. Since this requires advertising support for P-224 in the handshake, we need to support P-224 ECDHE too. P-224 support is disabled by default and so clients need to both set the enabled curves explicitly and set a maximum version of TLS 1.2. Change-Id: Idc69580f47334e0912eb431a0db0e78ee2eb5bbe Reviewed-on: https://boringssl-review.googlesource.com/14225 Reviewed-by: Adam Langley <alangley@gmail.com> Commit-Queue: Adam Langley <alangley@gmail.com> CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
2185 lines
67 KiB
C++
2185 lines
67 KiB
C++
/* Copyright (c) 2014, Google Inc.
|
||
*
|
||
* Permission to use, copy, modify, and/or distribute this software for any
|
||
* purpose with or without fee is hereby granted, provided that the above
|
||
* copyright notice and this permission notice appear in all copies.
|
||
*
|
||
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
||
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
||
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
|
||
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
||
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
|
||
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
|
||
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
|
||
|
||
#if !defined(__STDC_FORMAT_MACROS)
|
||
#define __STDC_FORMAT_MACROS
|
||
#endif
|
||
|
||
#include <openssl/base.h>
|
||
|
||
#if !defined(OPENSSL_WINDOWS)
|
||
#include <arpa/inet.h>
|
||
#include <netinet/in.h>
|
||
#include <netinet/tcp.h>
|
||
#include <signal.h>
|
||
#include <sys/socket.h>
|
||
#include <sys/time.h>
|
||
#include <unistd.h>
|
||
#else
|
||
#include <io.h>
|
||
OPENSSL_MSVC_PRAGMA(warning(push, 3))
|
||
#include <winsock2.h>
|
||
#include <ws2tcpip.h>
|
||
OPENSSL_MSVC_PRAGMA(warning(pop))
|
||
|
||
OPENSSL_MSVC_PRAGMA(comment(lib, "Ws2_32.lib"))
|
||
#endif
|
||
|
||
#include <assert.h>
|
||
#include <inttypes.h>
|
||
#include <string.h>
|
||
|
||
#include <openssl/aead.h>
|
||
#include <openssl/bio.h>
|
||
#include <openssl/buf.h>
|
||
#include <openssl/bytestring.h>
|
||
#include <openssl/cipher.h>
|
||
#include <openssl/crypto.h>
|
||
#include <openssl/dh.h>
|
||
#include <openssl/digest.h>
|
||
#include <openssl/err.h>
|
||
#include <openssl/evp.h>
|
||
#include <openssl/hmac.h>
|
||
#include <openssl/nid.h>
|
||
#include <openssl/rand.h>
|
||
#include <openssl/ssl.h>
|
||
#include <openssl/x509.h>
|
||
|
||
#include <memory>
|
||
#include <string>
|
||
#include <vector>
|
||
|
||
#include "../../crypto/internal.h"
|
||
#include "async_bio.h"
|
||
#include "packeted_bio.h"
|
||
#include "test_config.h"
|
||
|
||
|
||
static CRYPTO_BUFFER_POOL *g_pool = nullptr;
|
||
|
||
#if !defined(OPENSSL_WINDOWS)
|
||
static int closesocket(int sock) {
|
||
return close(sock);
|
||
}
|
||
|
||
static void PrintSocketError(const char *func) {
|
||
perror(func);
|
||
}
|
||
#else
|
||
static void PrintSocketError(const char *func) {
|
||
fprintf(stderr, "%s: %d\n", func, WSAGetLastError());
|
||
}
|
||
#endif
|
||
|
||
static int Usage(const char *program) {
|
||
fprintf(stderr, "Usage: %s [flags...]\n", program);
|
||
return 1;
|
||
}
|
||
|
||
struct TestState {
|
||
// async_bio is async BIO which pauses reads and writes.
|
||
BIO *async_bio = nullptr;
|
||
// packeted_bio is the packeted BIO which simulates read timeouts.
|
||
BIO *packeted_bio = nullptr;
|
||
bssl::UniquePtr<EVP_PKEY> channel_id;
|
||
bool cert_ready = false;
|
||
bssl::UniquePtr<SSL_SESSION> session;
|
||
bssl::UniquePtr<SSL_SESSION> pending_session;
|
||
bool early_callback_called = false;
|
||
bool handshake_done = false;
|
||
// private_key is the underlying private key used when testing custom keys.
|
||
bssl::UniquePtr<EVP_PKEY> private_key;
|
||
std::vector<uint8_t> private_key_result;
|
||
// private_key_retries is the number of times an asynchronous private key
|
||
// operation has been retried.
|
||
unsigned private_key_retries = 0;
|
||
bool got_new_session = false;
|
||
bssl::UniquePtr<SSL_SESSION> new_session;
|
||
bool ticket_decrypt_done = false;
|
||
bool alpn_select_done = false;
|
||
bool is_resume = false;
|
||
bool early_callback_ready = false;
|
||
};
|
||
|
||
static void TestStateExFree(void *parent, void *ptr, CRYPTO_EX_DATA *ad,
|
||
int index, long argl, void *argp) {
|
||
delete ((TestState *)ptr);
|
||
}
|
||
|
||
static int g_config_index = 0;
|
||
static int g_state_index = 0;
|
||
|
||
static bool SetTestConfig(SSL *ssl, const TestConfig *config) {
|
||
return SSL_set_ex_data(ssl, g_config_index, (void *)config) == 1;
|
||
}
|
||
|
||
static const TestConfig *GetTestConfig(const SSL *ssl) {
|
||
return (const TestConfig *)SSL_get_ex_data(ssl, g_config_index);
|
||
}
|
||
|
||
static bool SetTestState(SSL *ssl, std::unique_ptr<TestState> state) {
|
||
// |SSL_set_ex_data| takes ownership of |state| only on success.
|
||
if (SSL_set_ex_data(ssl, g_state_index, state.get()) == 1) {
|
||
state.release();
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
static TestState *GetTestState(const SSL *ssl) {
|
||
return (TestState *)SSL_get_ex_data(ssl, g_state_index);
|
||
}
|
||
|
||
static bool LoadCertificate(bssl::UniquePtr<X509> *out_x509,
|
||
bssl::UniquePtr<STACK_OF(X509)> *out_chain,
|
||
const std::string &file) {
|
||
bssl::UniquePtr<BIO> bio(BIO_new(BIO_s_file()));
|
||
if (!bio || !BIO_read_filename(bio.get(), file.c_str())) {
|
||
return false;
|
||
}
|
||
|
||
out_x509->reset(PEM_read_bio_X509(bio.get(), nullptr, nullptr, nullptr));
|
||
if (!*out_x509) {
|
||
return false;
|
||
}
|
||
|
||
out_chain->reset(sk_X509_new_null());
|
||
if (!*out_chain) {
|
||
return false;
|
||
}
|
||
|
||
// Keep reading the certificate chain.
|
||
for (;;) {
|
||
bssl::UniquePtr<X509> cert(
|
||
PEM_read_bio_X509(bio.get(), nullptr, nullptr, nullptr));
|
||
if (!cert) {
|
||
break;
|
||
}
|
||
|
||
if (!sk_X509_push(out_chain->get(), cert.get())) {
|
||
return false;
|
||
}
|
||
cert.release(); // sk_X509_push takes ownership.
|
||
}
|
||
|
||
uint32_t err = ERR_peek_last_error();
|
||
if (ERR_GET_LIB(err) != ERR_LIB_PEM ||
|
||
ERR_GET_REASON(err) != PEM_R_NO_START_LINE) {
|
||
return false;
|
||
}
|
||
|
||
ERR_clear_error();
|
||
return true;
|
||
}
|
||
|
||
static bssl::UniquePtr<EVP_PKEY> LoadPrivateKey(const std::string &file) {
|
||
bssl::UniquePtr<BIO> bio(BIO_new(BIO_s_file()));
|
||
if (!bio || !BIO_read_filename(bio.get(), file.c_str())) {
|
||
return nullptr;
|
||
}
|
||
return bssl::UniquePtr<EVP_PKEY>(
|
||
PEM_read_bio_PrivateKey(bio.get(), NULL, NULL, NULL));
|
||
}
|
||
|
||
static bool FromHexDigit(uint8_t *out, char c) {
|
||
if ('0' <= c && c <= '9') {
|
||
*out = c - '0';
|
||
return true;
|
||
}
|
||
if ('a' <= c && c <= 'f') {
|
||
*out = c - 'a' + 10;
|
||
return true;
|
||
}
|
||
if ('A' <= c && c <= 'F') {
|
||
*out = c - 'A' + 10;
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
static bool HexDecode(std::string *out, const std::string &in) {
|
||
if ((in.size() & 1) != 0) {
|
||
return false;
|
||
}
|
||
|
||
std::unique_ptr<uint8_t[]> buf(new uint8_t[in.size() / 2]);
|
||
for (size_t i = 0; i < in.size() / 2; i++) {
|
||
uint8_t high, low;
|
||
if (!FromHexDigit(&high, in[i*2]) ||
|
||
!FromHexDigit(&low, in[i*2+1])) {
|
||
return false;
|
||
}
|
||
buf[i] = (high << 4) | low;
|
||
}
|
||
|
||
out->assign(reinterpret_cast<const char *>(buf.get()), in.size() / 2);
|
||
return true;
|
||
}
|
||
|
||
static std::vector<std::string> SplitParts(const std::string &in,
|
||
const char delim) {
|
||
std::vector<std::string> ret;
|
||
size_t start = 0;
|
||
|
||
for (size_t i = 0; i < in.size(); i++) {
|
||
if (in[i] == delim) {
|
||
ret.push_back(in.substr(start, i - start));
|
||
start = i + 1;
|
||
}
|
||
}
|
||
|
||
ret.push_back(in.substr(start, std::string::npos));
|
||
return ret;
|
||
}
|
||
|
||
static std::vector<std::string> DecodeHexStrings(
|
||
const std::string &hex_strings) {
|
||
std::vector<std::string> ret;
|
||
const std::vector<std::string> parts = SplitParts(hex_strings, ',');
|
||
|
||
for (const auto &part : parts) {
|
||
std::string binary;
|
||
if (!HexDecode(&binary, part)) {
|
||
fprintf(stderr, "Bad hex string: %s\n", part.c_str());
|
||
return ret;
|
||
}
|
||
|
||
ret.push_back(binary);
|
||
}
|
||
|
||
return ret;
|
||
}
|
||
|
||
static bssl::UniquePtr<STACK_OF(X509_NAME)> DecodeHexX509Names(
|
||
const std::string &hex_names) {
|
||
const std::vector<std::string> der_names = DecodeHexStrings(hex_names);
|
||
bssl::UniquePtr<STACK_OF(X509_NAME)> ret(sk_X509_NAME_new_null());
|
||
|
||
for (const auto &der_name : der_names) {
|
||
const uint8_t *const data =
|
||
reinterpret_cast<const uint8_t *>(der_name.data());
|
||
const uint8_t *derp = data;
|
||
bssl::UniquePtr<X509_NAME> name(
|
||
d2i_X509_NAME(nullptr, &derp, der_name.size()));
|
||
if (!name || derp != data + der_name.size()) {
|
||
fprintf(stderr, "Failed to parse X509_NAME.\n");
|
||
return nullptr;
|
||
}
|
||
|
||
if (!sk_X509_NAME_push(ret.get(), name.get())) {
|
||
return nullptr;
|
||
}
|
||
name.release();
|
||
}
|
||
|
||
return ret;
|
||
}
|
||
|
||
static int AsyncPrivateKeyType(SSL *ssl) {
|
||
EVP_PKEY *key = GetTestState(ssl)->private_key.get();
|
||
switch (EVP_PKEY_id(key)) {
|
||
case EVP_PKEY_RSA:
|
||
return NID_rsaEncryption;
|
||
case EVP_PKEY_EC:
|
||
return EC_GROUP_get_curve_name(
|
||
EC_KEY_get0_group(EVP_PKEY_get0_EC_KEY(key)));
|
||
default:
|
||
return NID_undef;
|
||
}
|
||
}
|
||
|
||
static size_t AsyncPrivateKeyMaxSignatureLen(SSL *ssl) {
|
||
return EVP_PKEY_size(GetTestState(ssl)->private_key.get());
|
||
}
|
||
|
||
static ssl_private_key_result_t AsyncPrivateKeySign(
|
||
SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out,
|
||
uint16_t signature_algorithm, const uint8_t *in, size_t in_len) {
|
||
TestState *test_state = GetTestState(ssl);
|
||
if (!test_state->private_key_result.empty()) {
|
||
fprintf(stderr, "AsyncPrivateKeySign called with operation pending.\n");
|
||
abort();
|
||
}
|
||
|
||
// Determine the hash.
|
||
const EVP_MD *md;
|
||
switch (signature_algorithm) {
|
||
case SSL_SIGN_RSA_PKCS1_SHA1:
|
||
case SSL_SIGN_ECDSA_SHA1:
|
||
md = EVP_sha1();
|
||
break;
|
||
case SSL_SIGN_RSA_PKCS1_SHA256:
|
||
case SSL_SIGN_ECDSA_SECP256R1_SHA256:
|
||
case SSL_SIGN_RSA_PSS_SHA256:
|
||
md = EVP_sha256();
|
||
break;
|
||
case SSL_SIGN_RSA_PKCS1_SHA384:
|
||
case SSL_SIGN_ECDSA_SECP384R1_SHA384:
|
||
case SSL_SIGN_RSA_PSS_SHA384:
|
||
md = EVP_sha384();
|
||
break;
|
||
case SSL_SIGN_RSA_PKCS1_SHA512:
|
||
case SSL_SIGN_ECDSA_SECP521R1_SHA512:
|
||
case SSL_SIGN_RSA_PSS_SHA512:
|
||
md = EVP_sha512();
|
||
break;
|
||
case SSL_SIGN_RSA_PKCS1_MD5_SHA1:
|
||
md = EVP_md5_sha1();
|
||
break;
|
||
default:
|
||
fprintf(stderr, "Unknown signature algorithm %04x.\n",
|
||
signature_algorithm);
|
||
return ssl_private_key_failure;
|
||
}
|
||
|
||
bssl::ScopedEVP_MD_CTX ctx;
|
||
EVP_PKEY_CTX *pctx;
|
||
if (!EVP_DigestSignInit(ctx.get(), &pctx, md, nullptr,
|
||
test_state->private_key.get())) {
|
||
return ssl_private_key_failure;
|
||
}
|
||
|
||
// Configure additional signature parameters.
|
||
switch (signature_algorithm) {
|
||
case SSL_SIGN_RSA_PSS_SHA256:
|
||
case SSL_SIGN_RSA_PSS_SHA384:
|
||
case SSL_SIGN_RSA_PSS_SHA512:
|
||
if (!EVP_PKEY_CTX_set_rsa_padding(pctx, RSA_PKCS1_PSS_PADDING) ||
|
||
!EVP_PKEY_CTX_set_rsa_pss_saltlen(pctx,
|
||
-1 /* salt len = hash len */)) {
|
||
return ssl_private_key_failure;
|
||
}
|
||
}
|
||
|
||
// Write the signature into |test_state|.
|
||
size_t len = 0;
|
||
if (!EVP_DigestSignUpdate(ctx.get(), in, in_len) ||
|
||
!EVP_DigestSignFinal(ctx.get(), nullptr, &len)) {
|
||
return ssl_private_key_failure;
|
||
}
|
||
test_state->private_key_result.resize(len);
|
||
if (!EVP_DigestSignFinal(ctx.get(), test_state->private_key_result.data(),
|
||
&len)) {
|
||
return ssl_private_key_failure;
|
||
}
|
||
test_state->private_key_result.resize(len);
|
||
|
||
// The signature will be released asynchronously in |AsyncPrivateKeyComplete|.
|
||
return ssl_private_key_retry;
|
||
}
|
||
|
||
static ssl_private_key_result_t AsyncPrivateKeyDecrypt(
|
||
SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out,
|
||
const uint8_t *in, size_t in_len) {
|
||
TestState *test_state = GetTestState(ssl);
|
||
if (!test_state->private_key_result.empty()) {
|
||
fprintf(stderr,
|
||
"AsyncPrivateKeyDecrypt called with operation pending.\n");
|
||
abort();
|
||
}
|
||
|
||
RSA *rsa = EVP_PKEY_get0_RSA(test_state->private_key.get());
|
||
if (rsa == NULL) {
|
||
fprintf(stderr,
|
||
"AsyncPrivateKeyDecrypt called with incorrect key type.\n");
|
||
abort();
|
||
}
|
||
test_state->private_key_result.resize(RSA_size(rsa));
|
||
if (!RSA_decrypt(rsa, out_len, test_state->private_key_result.data(),
|
||
RSA_size(rsa), in, in_len, RSA_NO_PADDING)) {
|
||
return ssl_private_key_failure;
|
||
}
|
||
|
||
test_state->private_key_result.resize(*out_len);
|
||
|
||
// The decryption will be released asynchronously in |AsyncPrivateComplete|.
|
||
return ssl_private_key_retry;
|
||
}
|
||
|
||
static ssl_private_key_result_t AsyncPrivateKeyComplete(
|
||
SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out) {
|
||
TestState *test_state = GetTestState(ssl);
|
||
if (test_state->private_key_result.empty()) {
|
||
fprintf(stderr,
|
||
"AsyncPrivateKeyComplete called without operation pending.\n");
|
||
abort();
|
||
}
|
||
|
||
if (test_state->private_key_retries < 2) {
|
||
// Only return the decryption on the second attempt, to test both incomplete
|
||
// |decrypt| and |decrypt_complete|.
|
||
return ssl_private_key_retry;
|
||
}
|
||
|
||
if (max_out < test_state->private_key_result.size()) {
|
||
fprintf(stderr, "Output buffer too small.\n");
|
||
return ssl_private_key_failure;
|
||
}
|
||
OPENSSL_memcpy(out, test_state->private_key_result.data(),
|
||
test_state->private_key_result.size());
|
||
*out_len = test_state->private_key_result.size();
|
||
|
||
test_state->private_key_result.clear();
|
||
test_state->private_key_retries = 0;
|
||
return ssl_private_key_success;
|
||
}
|
||
|
||
static const SSL_PRIVATE_KEY_METHOD g_async_private_key_method = {
|
||
AsyncPrivateKeyType,
|
||
AsyncPrivateKeyMaxSignatureLen,
|
||
AsyncPrivateKeySign,
|
||
nullptr /* sign_digest */,
|
||
AsyncPrivateKeyDecrypt,
|
||
AsyncPrivateKeyComplete,
|
||
};
|
||
|
||
template<typename T>
|
||
struct Free {
|
||
void operator()(T *buf) {
|
||
free(buf);
|
||
}
|
||
};
|
||
|
||
static bool GetCertificate(SSL *ssl, bssl::UniquePtr<X509> *out_x509,
|
||
bssl::UniquePtr<STACK_OF(X509)> *out_chain,
|
||
bssl::UniquePtr<EVP_PKEY> *out_pkey) {
|
||
const TestConfig *config = GetTestConfig(ssl);
|
||
|
||
if (!config->digest_prefs.empty()) {
|
||
std::unique_ptr<char, Free<char>> digest_prefs(
|
||
strdup(config->digest_prefs.c_str()));
|
||
std::vector<int> digest_list;
|
||
|
||
for (;;) {
|
||
char *token =
|
||
strtok(digest_list.empty() ? digest_prefs.get() : nullptr, ",");
|
||
if (token == nullptr) {
|
||
break;
|
||
}
|
||
|
||
digest_list.push_back(EVP_MD_type(EVP_get_digestbyname(token)));
|
||
}
|
||
|
||
if (!SSL_set_private_key_digest_prefs(ssl, digest_list.data(),
|
||
digest_list.size())) {
|
||
return false;
|
||
}
|
||
}
|
||
|
||
if (!config->signing_prefs.empty()) {
|
||
std::vector<uint16_t> u16s(config->signing_prefs.begin(),
|
||
config->signing_prefs.end());
|
||
if (!SSL_set_signing_algorithm_prefs(ssl, u16s.data(), u16s.size())) {
|
||
return false;
|
||
}
|
||
}
|
||
|
||
if (!config->key_file.empty()) {
|
||
*out_pkey = LoadPrivateKey(config->key_file.c_str());
|
||
if (!*out_pkey) {
|
||
return false;
|
||
}
|
||
}
|
||
if (!config->cert_file.empty() &&
|
||
!LoadCertificate(out_x509, out_chain, config->cert_file.c_str())) {
|
||
return false;
|
||
}
|
||
if (!config->ocsp_response.empty() &&
|
||
!SSL_set_ocsp_response(ssl, (const uint8_t *)config->ocsp_response.data(),
|
||
config->ocsp_response.size())) {
|
||
return false;
|
||
}
|
||
return true;
|
||
}
|
||
|
||
static bool InstallCertificate(SSL *ssl) {
|
||
bssl::UniquePtr<X509> x509;
|
||
bssl::UniquePtr<STACK_OF(X509)> chain;
|
||
bssl::UniquePtr<EVP_PKEY> pkey;
|
||
if (!GetCertificate(ssl, &x509, &chain, &pkey)) {
|
||
return false;
|
||
}
|
||
|
||
if (pkey) {
|
||
TestState *test_state = GetTestState(ssl);
|
||
const TestConfig *config = GetTestConfig(ssl);
|
||
if (config->async) {
|
||
test_state->private_key = std::move(pkey);
|
||
SSL_set_private_key_method(ssl, &g_async_private_key_method);
|
||
} else if (!SSL_use_PrivateKey(ssl, pkey.get())) {
|
||
return false;
|
||
}
|
||
}
|
||
|
||
if (x509 && !SSL_use_certificate(ssl, x509.get())) {
|
||
return false;
|
||
}
|
||
|
||
if (sk_X509_num(chain.get()) > 0 &&
|
||
!SSL_set1_chain(ssl, chain.get())) {
|
||
return false;
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
static enum ssl_select_cert_result_t SelectCertificateCallback(
|
||
const SSL_CLIENT_HELLO *client_hello) {
|
||
const TestConfig *config = GetTestConfig(client_hello->ssl);
|
||
GetTestState(client_hello->ssl)->early_callback_called = true;
|
||
|
||
if (!config->expected_server_name.empty()) {
|
||
const uint8_t *extension_data;
|
||
size_t extension_len;
|
||
CBS extension, server_name_list, host_name;
|
||
uint8_t name_type;
|
||
|
||
if (!SSL_early_callback_ctx_extension_get(
|
||
client_hello, TLSEXT_TYPE_server_name, &extension_data,
|
||
&extension_len)) {
|
||
fprintf(stderr, "Could not find server_name extension.\n");
|
||
return ssl_select_cert_error;
|
||
}
|
||
|
||
CBS_init(&extension, extension_data, extension_len);
|
||
if (!CBS_get_u16_length_prefixed(&extension, &server_name_list) ||
|
||
CBS_len(&extension) != 0 ||
|
||
!CBS_get_u8(&server_name_list, &name_type) ||
|
||
name_type != TLSEXT_NAMETYPE_host_name ||
|
||
!CBS_get_u16_length_prefixed(&server_name_list, &host_name) ||
|
||
CBS_len(&server_name_list) != 0) {
|
||
fprintf(stderr, "Could not decode server_name extension.\n");
|
||
return ssl_select_cert_error;
|
||
}
|
||
|
||
if (!CBS_mem_equal(&host_name,
|
||
(const uint8_t*)config->expected_server_name.data(),
|
||
config->expected_server_name.size())) {
|
||
fprintf(stderr, "Server name mismatch.\n");
|
||
}
|
||
}
|
||
|
||
if (config->fail_early_callback) {
|
||
return ssl_select_cert_error;
|
||
}
|
||
|
||
// Install the certificate in the early callback.
|
||
if (config->use_early_callback) {
|
||
bool early_callback_ready =
|
||
GetTestState(client_hello->ssl)->early_callback_ready;
|
||
if (config->async && !early_callback_ready) {
|
||
// Install the certificate asynchronously.
|
||
return ssl_select_cert_retry;
|
||
}
|
||
if (!InstallCertificate(client_hello->ssl)) {
|
||
return ssl_select_cert_error;
|
||
}
|
||
}
|
||
return ssl_select_cert_success;
|
||
}
|
||
|
||
static bool CheckCertificateRequest(SSL *ssl) {
|
||
const TestConfig *config = GetTestConfig(ssl);
|
||
|
||
if (!config->expected_certificate_types.empty()) {
|
||
const uint8_t *certificate_types;
|
||
size_t certificate_types_len =
|
||
SSL_get0_certificate_types(ssl, &certificate_types);
|
||
if (certificate_types_len != config->expected_certificate_types.size() ||
|
||
OPENSSL_memcmp(certificate_types,
|
||
config->expected_certificate_types.data(),
|
||
certificate_types_len) != 0) {
|
||
fprintf(stderr, "certificate types mismatch\n");
|
||
return false;
|
||
}
|
||
}
|
||
|
||
if (!config->expected_client_ca_list.empty()) {
|
||
bssl::UniquePtr<STACK_OF(X509_NAME)> expected =
|
||
DecodeHexX509Names(config->expected_client_ca_list);
|
||
const size_t num_expected = sk_X509_NAME_num(expected.get());
|
||
|
||
const STACK_OF(X509_NAME) *received = SSL_get_client_CA_list(ssl);
|
||
const size_t num_received = sk_X509_NAME_num(received);
|
||
|
||
if (num_received != num_expected) {
|
||
fprintf(stderr, "expected %u names in CertificateRequest but got %u\n",
|
||
static_cast<unsigned>(num_expected),
|
||
static_cast<unsigned>(num_received));
|
||
return false;
|
||
}
|
||
|
||
for (size_t i = 0; i < num_received; i++) {
|
||
if (X509_NAME_cmp(sk_X509_NAME_value(received, i),
|
||
sk_X509_NAME_value(expected.get(), i)) != 0) {
|
||
fprintf(stderr, "names in CertificateRequest differ at index #%d\n",
|
||
static_cast<unsigned>(i));
|
||
return false;
|
||
}
|
||
}
|
||
|
||
STACK_OF(CRYPTO_BUFFER) *buffers = SSL_get0_server_requested_CAs(ssl);
|
||
if (sk_CRYPTO_BUFFER_num(buffers) != num_received) {
|
||
fprintf(stderr,
|
||
"Mismatch between SSL_get_server_requested_CAs and "
|
||
"SSL_get_client_CA_list.\n");
|
||
return false;
|
||
}
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
static int ClientCertCallback(SSL *ssl, X509 **out_x509, EVP_PKEY **out_pkey) {
|
||
if (!CheckCertificateRequest(ssl)) {
|
||
return -1;
|
||
}
|
||
|
||
if (GetTestConfig(ssl)->async && !GetTestState(ssl)->cert_ready) {
|
||
return -1;
|
||
}
|
||
|
||
bssl::UniquePtr<X509> x509;
|
||
bssl::UniquePtr<STACK_OF(X509)> chain;
|
||
bssl::UniquePtr<EVP_PKEY> pkey;
|
||
if (!GetCertificate(ssl, &x509, &chain, &pkey)) {
|
||
return -1;
|
||
}
|
||
|
||
// Return zero for no certificate.
|
||
if (!x509) {
|
||
return 0;
|
||
}
|
||
|
||
// Chains and asynchronous private keys are not supported with client_cert_cb.
|
||
*out_x509 = x509.release();
|
||
*out_pkey = pkey.release();
|
||
return 1;
|
||
}
|
||
|
||
static int CertCallback(SSL *ssl, void *arg) {
|
||
const TestConfig *config = GetTestConfig(ssl);
|
||
|
||
// Check the CertificateRequest metadata is as expected.
|
||
if (!SSL_is_server(ssl) && !CheckCertificateRequest(ssl)) {
|
||
return -1;
|
||
}
|
||
|
||
if (config->fail_cert_callback) {
|
||
return 0;
|
||
}
|
||
|
||
// The certificate will be installed via other means.
|
||
if (!config->async || config->use_early_callback) {
|
||
return 1;
|
||
}
|
||
|
||
if (!GetTestState(ssl)->cert_ready) {
|
||
return -1;
|
||
}
|
||
if (!InstallCertificate(ssl)) {
|
||
return 0;
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
static int VerifySucceed(X509_STORE_CTX *store_ctx, void *arg) {
|
||
SSL* ssl = (SSL*)X509_STORE_CTX_get_ex_data(store_ctx,
|
||
SSL_get_ex_data_X509_STORE_CTX_idx());
|
||
const TestConfig *config = GetTestConfig(ssl);
|
||
|
||
if (!config->expected_ocsp_response.empty()) {
|
||
const uint8_t *data;
|
||
size_t len;
|
||
SSL_get0_ocsp_response(ssl, &data, &len);
|
||
if (len == 0) {
|
||
fprintf(stderr, "OCSP response not available in verify callback\n");
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
return 1;
|
||
}
|
||
|
||
static int VerifyFail(X509_STORE_CTX *store_ctx, void *arg) {
|
||
store_ctx->error = X509_V_ERR_APPLICATION_VERIFICATION;
|
||
return 0;
|
||
}
|
||
|
||
static int NextProtosAdvertisedCallback(SSL *ssl, const uint8_t **out,
|
||
unsigned int *out_len, void *arg) {
|
||
const TestConfig *config = GetTestConfig(ssl);
|
||
if (config->advertise_npn.empty()) {
|
||
return SSL_TLSEXT_ERR_NOACK;
|
||
}
|
||
|
||
*out = (const uint8_t*)config->advertise_npn.data();
|
||
*out_len = config->advertise_npn.size();
|
||
return SSL_TLSEXT_ERR_OK;
|
||
}
|
||
|
||
static int NextProtoSelectCallback(SSL* ssl, uint8_t** out, uint8_t* outlen,
|
||
const uint8_t* in, unsigned inlen, void* arg) {
|
||
const TestConfig *config = GetTestConfig(ssl);
|
||
if (config->select_next_proto.empty()) {
|
||
return SSL_TLSEXT_ERR_NOACK;
|
||
}
|
||
|
||
*out = (uint8_t*)config->select_next_proto.data();
|
||
*outlen = config->select_next_proto.size();
|
||
return SSL_TLSEXT_ERR_OK;
|
||
}
|
||
|
||
static int AlpnSelectCallback(SSL* ssl, const uint8_t** out, uint8_t* outlen,
|
||
const uint8_t* in, unsigned inlen, void* arg) {
|
||
if (GetTestState(ssl)->alpn_select_done) {
|
||
fprintf(stderr, "AlpnSelectCallback called after completion.\n");
|
||
exit(1);
|
||
}
|
||
|
||
GetTestState(ssl)->alpn_select_done = true;
|
||
|
||
const TestConfig *config = GetTestConfig(ssl);
|
||
if (config->decline_alpn) {
|
||
return SSL_TLSEXT_ERR_NOACK;
|
||
}
|
||
|
||
if (!config->expected_advertised_alpn.empty() &&
|
||
(config->expected_advertised_alpn.size() != inlen ||
|
||
OPENSSL_memcmp(config->expected_advertised_alpn.data(), in, inlen) !=
|
||
0)) {
|
||
fprintf(stderr, "bad ALPN select callback inputs\n");
|
||
exit(1);
|
||
}
|
||
|
||
*out = (const uint8_t*)config->select_alpn.data();
|
||
*outlen = config->select_alpn.size();
|
||
if (GetTestState(ssl)->is_resume && config->select_resume_alpn.size() > 0) {
|
||
*out = (const uint8_t*)config->select_resume_alpn.data();
|
||
*outlen = config->select_resume_alpn.size();
|
||
}
|
||
return SSL_TLSEXT_ERR_OK;
|
||
}
|
||
|
||
static unsigned PskClientCallback(SSL *ssl, const char *hint,
|
||
char *out_identity,
|
||
unsigned max_identity_len,
|
||
uint8_t *out_psk, unsigned max_psk_len) {
|
||
const TestConfig *config = GetTestConfig(ssl);
|
||
|
||
if (config->psk_identity.empty()) {
|
||
if (hint != nullptr) {
|
||
fprintf(stderr, "Server PSK hint was non-null.\n");
|
||
return 0;
|
||
}
|
||
} else if (hint == nullptr ||
|
||
strcmp(hint, config->psk_identity.c_str()) != 0) {
|
||
fprintf(stderr, "Server PSK hint did not match.\n");
|
||
return 0;
|
||
}
|
||
|
||
// Account for the trailing '\0' for the identity.
|
||
if (config->psk_identity.size() >= max_identity_len ||
|
||
config->psk.size() > max_psk_len) {
|
||
fprintf(stderr, "PSK buffers too small\n");
|
||
return 0;
|
||
}
|
||
|
||
BUF_strlcpy(out_identity, config->psk_identity.c_str(),
|
||
max_identity_len);
|
||
OPENSSL_memcpy(out_psk, config->psk.data(), config->psk.size());
|
||
return config->psk.size();
|
||
}
|
||
|
||
static unsigned PskServerCallback(SSL *ssl, const char *identity,
|
||
uint8_t *out_psk, unsigned max_psk_len) {
|
||
const TestConfig *config = GetTestConfig(ssl);
|
||
|
||
if (strcmp(identity, config->psk_identity.c_str()) != 0) {
|
||
fprintf(stderr, "Client PSK identity did not match.\n");
|
||
return 0;
|
||
}
|
||
|
||
if (config->psk.size() > max_psk_len) {
|
||
fprintf(stderr, "PSK buffers too small\n");
|
||
return 0;
|
||
}
|
||
|
||
OPENSSL_memcpy(out_psk, config->psk.data(), config->psk.size());
|
||
return config->psk.size();
|
||
}
|
||
|
||
static timeval g_clock;
|
||
|
||
static void CurrentTimeCallback(const SSL *ssl, timeval *out_clock) {
|
||
*out_clock = g_clock;
|
||
}
|
||
|
||
static void ChannelIdCallback(SSL *ssl, EVP_PKEY **out_pkey) {
|
||
*out_pkey = GetTestState(ssl)->channel_id.release();
|
||
}
|
||
|
||
static SSL_SESSION *GetSessionCallback(SSL *ssl, uint8_t *data, int len,
|
||
int *copy) {
|
||
TestState *async_state = GetTestState(ssl);
|
||
if (async_state->session) {
|
||
*copy = 0;
|
||
return async_state->session.release();
|
||
} else if (async_state->pending_session) {
|
||
return SSL_magic_pending_session_ptr();
|
||
} else {
|
||
return NULL;
|
||
}
|
||
}
|
||
|
||
static int DDoSCallback(const SSL_CLIENT_HELLO *client_hello) {
|
||
const TestConfig *config = GetTestConfig(client_hello->ssl);
|
||
static int callback_num = 0;
|
||
|
||
callback_num++;
|
||
if (config->fail_ddos_callback ||
|
||
(config->fail_second_ddos_callback && callback_num == 2)) {
|
||
return 0;
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
static void InfoCallback(const SSL *ssl, int type, int val) {
|
||
if (type == SSL_CB_HANDSHAKE_DONE) {
|
||
if (GetTestConfig(ssl)->handshake_never_done) {
|
||
fprintf(stderr, "Handshake unexpectedly completed.\n");
|
||
// Abort before any expected error code is printed, to ensure the overall
|
||
// test fails.
|
||
abort();
|
||
}
|
||
GetTestState(ssl)->handshake_done = true;
|
||
|
||
// Callbacks may be called again on a new handshake.
|
||
GetTestState(ssl)->ticket_decrypt_done = false;
|
||
GetTestState(ssl)->alpn_select_done = false;
|
||
}
|
||
}
|
||
|
||
static int NewSessionCallback(SSL *ssl, SSL_SESSION *session) {
|
||
GetTestState(ssl)->got_new_session = true;
|
||
GetTestState(ssl)->new_session.reset(session);
|
||
return 1;
|
||
}
|
||
|
||
static int TicketKeyCallback(SSL *ssl, uint8_t *key_name, uint8_t *iv,
|
||
EVP_CIPHER_CTX *ctx, HMAC_CTX *hmac_ctx,
|
||
int encrypt) {
|
||
if (!encrypt) {
|
||
if (GetTestState(ssl)->ticket_decrypt_done) {
|
||
fprintf(stderr, "TicketKeyCallback called after completion.\n");
|
||
return -1;
|
||
}
|
||
|
||
GetTestState(ssl)->ticket_decrypt_done = true;
|
||
}
|
||
|
||
// This is just test code, so use the all-zeros key.
|
||
static const uint8_t kZeros[16] = {0};
|
||
|
||
if (encrypt) {
|
||
OPENSSL_memcpy(key_name, kZeros, sizeof(kZeros));
|
||
RAND_bytes(iv, 16);
|
||
} else if (OPENSSL_memcmp(key_name, kZeros, 16) != 0) {
|
||
return 0;
|
||
}
|
||
|
||
if (!HMAC_Init_ex(hmac_ctx, kZeros, sizeof(kZeros), EVP_sha256(), NULL) ||
|
||
!EVP_CipherInit_ex(ctx, EVP_aes_128_cbc(), NULL, kZeros, iv, encrypt)) {
|
||
return -1;
|
||
}
|
||
|
||
if (!encrypt) {
|
||
return GetTestConfig(ssl)->renew_ticket ? 2 : 1;
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
// kCustomExtensionValue is the extension value that the custom extension
|
||
// callbacks will add.
|
||
static const uint16_t kCustomExtensionValue = 1234;
|
||
static void *const kCustomExtensionAddArg =
|
||
reinterpret_cast<void *>(kCustomExtensionValue);
|
||
static void *const kCustomExtensionParseArg =
|
||
reinterpret_cast<void *>(kCustomExtensionValue + 1);
|
||
static const char kCustomExtensionContents[] = "custom extension";
|
||
|
||
static int CustomExtensionAddCallback(SSL *ssl, unsigned extension_value,
|
||
const uint8_t **out, size_t *out_len,
|
||
int *out_alert_value, void *add_arg) {
|
||
if (extension_value != kCustomExtensionValue ||
|
||
add_arg != kCustomExtensionAddArg) {
|
||
abort();
|
||
}
|
||
|
||
if (GetTestConfig(ssl)->custom_extension_skip) {
|
||
return 0;
|
||
}
|
||
if (GetTestConfig(ssl)->custom_extension_fail_add) {
|
||
return -1;
|
||
}
|
||
|
||
*out = reinterpret_cast<const uint8_t*>(kCustomExtensionContents);
|
||
*out_len = sizeof(kCustomExtensionContents) - 1;
|
||
|
||
return 1;
|
||
}
|
||
|
||
static void CustomExtensionFreeCallback(SSL *ssl, unsigned extension_value,
|
||
const uint8_t *out, void *add_arg) {
|
||
if (extension_value != kCustomExtensionValue ||
|
||
add_arg != kCustomExtensionAddArg ||
|
||
out != reinterpret_cast<const uint8_t *>(kCustomExtensionContents)) {
|
||
abort();
|
||
}
|
||
}
|
||
|
||
static int CustomExtensionParseCallback(SSL *ssl, unsigned extension_value,
|
||
const uint8_t *contents,
|
||
size_t contents_len,
|
||
int *out_alert_value, void *parse_arg) {
|
||
if (extension_value != kCustomExtensionValue ||
|
||
parse_arg != kCustomExtensionParseArg) {
|
||
abort();
|
||
}
|
||
|
||
if (contents_len != sizeof(kCustomExtensionContents) - 1 ||
|
||
OPENSSL_memcmp(contents, kCustomExtensionContents, contents_len) != 0) {
|
||
*out_alert_value = SSL_AD_DECODE_ERROR;
|
||
return 0;
|
||
}
|
||
|
||
return 1;
|
||
}
|
||
|
||
static int ServerNameCallback(SSL *ssl, int *out_alert, void *arg) {
|
||
// SNI must be accessible from the SNI callback.
|
||
const TestConfig *config = GetTestConfig(ssl);
|
||
const char *server_name = SSL_get_servername(ssl, TLSEXT_NAMETYPE_host_name);
|
||
if (server_name == nullptr ||
|
||
std::string(server_name) != config->expected_server_name) {
|
||
fprintf(stderr, "servername mismatch (got %s; want %s)\n", server_name,
|
||
config->expected_server_name.c_str());
|
||
return SSL_TLSEXT_ERR_ALERT_FATAL;
|
||
}
|
||
|
||
return SSL_TLSEXT_ERR_OK;
|
||
}
|
||
|
||
// Connect returns a new socket connected to localhost on |port| or -1 on
|
||
// error.
|
||
static int Connect(uint16_t port) {
|
||
int sock = socket(AF_INET, SOCK_STREAM, 0);
|
||
if (sock == -1) {
|
||
PrintSocketError("socket");
|
||
return -1;
|
||
}
|
||
int nodelay = 1;
|
||
if (setsockopt(sock, IPPROTO_TCP, TCP_NODELAY,
|
||
reinterpret_cast<const char*>(&nodelay), sizeof(nodelay)) != 0) {
|
||
PrintSocketError("setsockopt");
|
||
closesocket(sock);
|
||
return -1;
|
||
}
|
||
sockaddr_in sin;
|
||
OPENSSL_memset(&sin, 0, sizeof(sin));
|
||
sin.sin_family = AF_INET;
|
||
sin.sin_port = htons(port);
|
||
if (!inet_pton(AF_INET, "127.0.0.1", &sin.sin_addr)) {
|
||
PrintSocketError("inet_pton");
|
||
closesocket(sock);
|
||
return -1;
|
||
}
|
||
if (connect(sock, reinterpret_cast<const sockaddr*>(&sin),
|
||
sizeof(sin)) != 0) {
|
||
PrintSocketError("connect");
|
||
closesocket(sock);
|
||
return -1;
|
||
}
|
||
return sock;
|
||
}
|
||
|
||
class SocketCloser {
|
||
public:
|
||
explicit SocketCloser(int sock) : sock_(sock) {}
|
||
~SocketCloser() {
|
||
// Half-close and drain the socket before releasing it. This seems to be
|
||
// necessary for graceful shutdown on Windows. It will also avoid write
|
||
// failures in the test runner.
|
||
#if defined(OPENSSL_WINDOWS)
|
||
shutdown(sock_, SD_SEND);
|
||
#else
|
||
shutdown(sock_, SHUT_WR);
|
||
#endif
|
||
while (true) {
|
||
char buf[1024];
|
||
if (recv(sock_, buf, sizeof(buf), 0) <= 0) {
|
||
break;
|
||
}
|
||
}
|
||
closesocket(sock_);
|
||
}
|
||
|
||
private:
|
||
const int sock_;
|
||
};
|
||
|
||
static bssl::UniquePtr<SSL_CTX> SetupCtx(const TestConfig *config) {
|
||
bssl::UniquePtr<SSL_CTX> ssl_ctx(SSL_CTX_new(
|
||
config->is_dtls ? DTLS_method() : TLS_method()));
|
||
if (!ssl_ctx) {
|
||
return nullptr;
|
||
}
|
||
|
||
SSL_CTX_set0_buffer_pool(ssl_ctx.get(), g_pool);
|
||
|
||
// Enable TLS 1.3 for tests.
|
||
if (!config->is_dtls &&
|
||
!SSL_CTX_set_max_proto_version(ssl_ctx.get(), TLS1_3_VERSION)) {
|
||
return nullptr;
|
||
}
|
||
|
||
std::string cipher_list = "ALL";
|
||
if (!config->cipher.empty()) {
|
||
cipher_list = config->cipher;
|
||
SSL_CTX_set_options(ssl_ctx.get(), SSL_OP_CIPHER_SERVER_PREFERENCE);
|
||
}
|
||
if (!SSL_CTX_set_strict_cipher_list(ssl_ctx.get(), cipher_list.c_str())) {
|
||
return nullptr;
|
||
}
|
||
|
||
bssl::UniquePtr<DH> dh(DH_get_2048_256(NULL));
|
||
if (!dh) {
|
||
return nullptr;
|
||
}
|
||
|
||
if (config->use_sparse_dh_prime) {
|
||
// This prime number is 2^1024 + 643 – a value just above a power of two.
|
||
// Because of its form, values modulo it are essentially certain to be one
|
||
// byte shorter. This is used to test padding of these values.
|
||
if (BN_hex2bn(
|
||
&dh->p,
|
||
"1000000000000000000000000000000000000000000000000000000000000000"
|
||
"0000000000000000000000000000000000000000000000000000000000000000"
|
||
"0000000000000000000000000000000000000000000000000000000000000000"
|
||
"0000000000000000000000000000000000000000000000000000000000000028"
|
||
"3") == 0 ||
|
||
!BN_set_word(dh->g, 2)) {
|
||
return nullptr;
|
||
}
|
||
BN_free(dh->q);
|
||
dh->q = NULL;
|
||
dh->priv_length = 0;
|
||
}
|
||
|
||
if (!SSL_CTX_set_tmp_dh(ssl_ctx.get(), dh.get())) {
|
||
return nullptr;
|
||
}
|
||
|
||
if (config->async && config->is_server) {
|
||
// Disable the internal session cache. To test asynchronous session lookup,
|
||
// we use an external session cache.
|
||
SSL_CTX_set_session_cache_mode(
|
||
ssl_ctx.get(), SSL_SESS_CACHE_BOTH | SSL_SESS_CACHE_NO_INTERNAL);
|
||
SSL_CTX_sess_set_get_cb(ssl_ctx.get(), GetSessionCallback);
|
||
} else {
|
||
SSL_CTX_set_session_cache_mode(ssl_ctx.get(), SSL_SESS_CACHE_BOTH);
|
||
}
|
||
|
||
SSL_CTX_set_select_certificate_cb(ssl_ctx.get(), SelectCertificateCallback);
|
||
|
||
if (config->use_old_client_cert_callback) {
|
||
SSL_CTX_set_client_cert_cb(ssl_ctx.get(), ClientCertCallback);
|
||
}
|
||
|
||
SSL_CTX_set_next_protos_advertised_cb(
|
||
ssl_ctx.get(), NextProtosAdvertisedCallback, NULL);
|
||
if (!config->select_next_proto.empty()) {
|
||
SSL_CTX_set_next_proto_select_cb(ssl_ctx.get(), NextProtoSelectCallback,
|
||
NULL);
|
||
}
|
||
|
||
if (!config->select_alpn.empty() || !config->select_resume_alpn.empty() ||
|
||
config->decline_alpn) {
|
||
SSL_CTX_set_alpn_select_cb(ssl_ctx.get(), AlpnSelectCallback, NULL);
|
||
}
|
||
|
||
SSL_CTX_set_channel_id_cb(ssl_ctx.get(), ChannelIdCallback);
|
||
|
||
SSL_CTX_set_current_time_cb(ssl_ctx.get(), CurrentTimeCallback);
|
||
|
||
SSL_CTX_set_info_callback(ssl_ctx.get(), InfoCallback);
|
||
SSL_CTX_sess_set_new_cb(ssl_ctx.get(), NewSessionCallback);
|
||
|
||
if (config->use_ticket_callback) {
|
||
SSL_CTX_set_tlsext_ticket_key_cb(ssl_ctx.get(), TicketKeyCallback);
|
||
}
|
||
|
||
if (config->enable_client_custom_extension &&
|
||
!SSL_CTX_add_client_custom_ext(
|
||
ssl_ctx.get(), kCustomExtensionValue, CustomExtensionAddCallback,
|
||
CustomExtensionFreeCallback, kCustomExtensionAddArg,
|
||
CustomExtensionParseCallback, kCustomExtensionParseArg)) {
|
||
return nullptr;
|
||
}
|
||
|
||
if (config->enable_server_custom_extension &&
|
||
!SSL_CTX_add_server_custom_ext(
|
||
ssl_ctx.get(), kCustomExtensionValue, CustomExtensionAddCallback,
|
||
CustomExtensionFreeCallback, kCustomExtensionAddArg,
|
||
CustomExtensionParseCallback, kCustomExtensionParseArg)) {
|
||
return nullptr;
|
||
}
|
||
|
||
if (config->verify_fail) {
|
||
SSL_CTX_set_cert_verify_callback(ssl_ctx.get(), VerifyFail, NULL);
|
||
} else {
|
||
SSL_CTX_set_cert_verify_callback(ssl_ctx.get(), VerifySucceed, NULL);
|
||
}
|
||
|
||
if (!config->signed_cert_timestamps.empty() &&
|
||
!SSL_CTX_set_signed_cert_timestamp_list(
|
||
ssl_ctx.get(), (const uint8_t *)config->signed_cert_timestamps.data(),
|
||
config->signed_cert_timestamps.size())) {
|
||
return nullptr;
|
||
}
|
||
|
||
if (!config->use_client_ca_list.empty()) {
|
||
if (config->use_client_ca_list == "<NULL>") {
|
||
SSL_CTX_set_client_CA_list(ssl_ctx.get(), nullptr);
|
||
} else {
|
||
bssl::UniquePtr<STACK_OF(X509_NAME)> names =
|
||
DecodeHexX509Names(config->use_client_ca_list);
|
||
SSL_CTX_set_client_CA_list(ssl_ctx.get(), names.release());
|
||
}
|
||
}
|
||
|
||
if (config->enable_grease) {
|
||
SSL_CTX_set_grease_enabled(ssl_ctx.get(), 1);
|
||
}
|
||
|
||
if (!config->expected_server_name.empty()) {
|
||
SSL_CTX_set_tlsext_servername_callback(ssl_ctx.get(), ServerNameCallback);
|
||
}
|
||
|
||
if (!config->ticket_key.empty() &&
|
||
!SSL_CTX_set_tlsext_ticket_keys(ssl_ctx.get(), config->ticket_key.data(),
|
||
config->ticket_key.size())) {
|
||
return nullptr;
|
||
}
|
||
|
||
if (config->enable_early_data) {
|
||
SSL_CTX_set_early_data_enabled(ssl_ctx.get(), 1);
|
||
}
|
||
|
||
return ssl_ctx;
|
||
}
|
||
|
||
// RetryAsync is called after a failed operation on |ssl| with return code
|
||
// |ret|. If the operation should be retried, it simulates one asynchronous
|
||
// event and returns true. Otherwise it returns false.
|
||
static bool RetryAsync(SSL *ssl, int ret) {
|
||
// No error; don't retry.
|
||
if (ret >= 0) {
|
||
return false;
|
||
}
|
||
|
||
TestState *test_state = GetTestState(ssl);
|
||
assert(GetTestConfig(ssl)->async);
|
||
|
||
if (test_state->packeted_bio != nullptr &&
|
||
PacketedBioAdvanceClock(test_state->packeted_bio)) {
|
||
// The DTLS retransmit logic silently ignores write failures. So the test
|
||
// may progress, allow writes through synchronously.
|
||
AsyncBioEnforceWriteQuota(test_state->async_bio, false);
|
||
int timeout_ret = DTLSv1_handle_timeout(ssl);
|
||
AsyncBioEnforceWriteQuota(test_state->async_bio, true);
|
||
|
||
if (timeout_ret < 0) {
|
||
fprintf(stderr, "Error retransmitting.\n");
|
||
return false;
|
||
}
|
||
return true;
|
||
}
|
||
|
||
// See if we needed to read or write more. If so, allow one byte through on
|
||
// the appropriate end to maximally stress the state machine.
|
||
switch (SSL_get_error(ssl, ret)) {
|
||
case SSL_ERROR_WANT_READ:
|
||
AsyncBioAllowRead(test_state->async_bio, 1);
|
||
return true;
|
||
case SSL_ERROR_WANT_WRITE:
|
||
AsyncBioAllowWrite(test_state->async_bio, 1);
|
||
return true;
|
||
case SSL_ERROR_WANT_CHANNEL_ID_LOOKUP: {
|
||
bssl::UniquePtr<EVP_PKEY> pkey =
|
||
LoadPrivateKey(GetTestConfig(ssl)->send_channel_id);
|
||
if (!pkey) {
|
||
return false;
|
||
}
|
||
test_state->channel_id = std::move(pkey);
|
||
return true;
|
||
}
|
||
case SSL_ERROR_WANT_X509_LOOKUP:
|
||
test_state->cert_ready = true;
|
||
return true;
|
||
case SSL_ERROR_PENDING_SESSION:
|
||
test_state->session = std::move(test_state->pending_session);
|
||
return true;
|
||
case SSL_ERROR_PENDING_CERTIFICATE:
|
||
test_state->early_callback_ready = true;
|
||
return true;
|
||
case SSL_ERROR_WANT_PRIVATE_KEY_OPERATION:
|
||
test_state->private_key_retries++;
|
||
return true;
|
||
default:
|
||
return false;
|
||
}
|
||
}
|
||
|
||
// DoRead reads from |ssl|, resolving any asynchronous operations. It returns
|
||
// the result value of the final |SSL_read| call.
|
||
static int DoRead(SSL *ssl, uint8_t *out, size_t max_out) {
|
||
const TestConfig *config = GetTestConfig(ssl);
|
||
TestState *test_state = GetTestState(ssl);
|
||
int ret;
|
||
do {
|
||
if (config->async) {
|
||
// The DTLS retransmit logic silently ignores write failures. So the test
|
||
// may progress, allow writes through synchronously. |SSL_read| may
|
||
// trigger a retransmit, so disconnect the write quota.
|
||
AsyncBioEnforceWriteQuota(test_state->async_bio, false);
|
||
}
|
||
ret = config->peek_then_read ? SSL_peek(ssl, out, max_out)
|
||
: SSL_read(ssl, out, max_out);
|
||
if (config->async) {
|
||
AsyncBioEnforceWriteQuota(test_state->async_bio, true);
|
||
}
|
||
|
||
// Run the exporter after each read. This is to test that the exporter fails
|
||
// during a renegotiation.
|
||
if (config->use_exporter_between_reads) {
|
||
uint8_t buf;
|
||
if (!SSL_export_keying_material(ssl, &buf, 1, NULL, 0, NULL, 0, 0)) {
|
||
fprintf(stderr, "failed to export keying material\n");
|
||
return -1;
|
||
}
|
||
}
|
||
} while (config->async && RetryAsync(ssl, ret));
|
||
|
||
if (config->peek_then_read && ret > 0) {
|
||
std::unique_ptr<uint8_t[]> buf(new uint8_t[static_cast<size_t>(ret)]);
|
||
|
||
// SSL_peek should synchronously return the same data.
|
||
int ret2 = SSL_peek(ssl, buf.get(), ret);
|
||
if (ret2 != ret ||
|
||
OPENSSL_memcmp(buf.get(), out, ret) != 0) {
|
||
fprintf(stderr, "First and second SSL_peek did not match.\n");
|
||
return -1;
|
||
}
|
||
|
||
// SSL_read should synchronously return the same data and consume it.
|
||
ret2 = SSL_read(ssl, buf.get(), ret);
|
||
if (ret2 != ret ||
|
||
OPENSSL_memcmp(buf.get(), out, ret) != 0) {
|
||
fprintf(stderr, "SSL_peek and SSL_read did not match.\n");
|
||
return -1;
|
||
}
|
||
}
|
||
|
||
return ret;
|
||
}
|
||
|
||
// WriteAll writes |in_len| bytes from |in| to |ssl|, resolving any asynchronous
|
||
// operations. It returns the result of the final |SSL_write| call.
|
||
static int WriteAll(SSL *ssl, const uint8_t *in, size_t in_len) {
|
||
const TestConfig *config = GetTestConfig(ssl);
|
||
int ret;
|
||
do {
|
||
ret = SSL_write(ssl, in, in_len);
|
||
if (ret > 0) {
|
||
in += ret;
|
||
in_len -= ret;
|
||
}
|
||
} while ((config->async && RetryAsync(ssl, ret)) || (ret > 0 && in_len > 0));
|
||
return ret;
|
||
}
|
||
|
||
// DoShutdown calls |SSL_shutdown|, resolving any asynchronous operations. It
|
||
// returns the result of the final |SSL_shutdown| call.
|
||
static int DoShutdown(SSL *ssl) {
|
||
const TestConfig *config = GetTestConfig(ssl);
|
||
int ret;
|
||
do {
|
||
ret = SSL_shutdown(ssl);
|
||
} while (config->async && RetryAsync(ssl, ret));
|
||
return ret;
|
||
}
|
||
|
||
// DoSendFatalAlert calls |SSL_send_fatal_alert|, resolving any asynchronous
|
||
// operations. It returns the result of the final |SSL_send_fatal_alert| call.
|
||
static int DoSendFatalAlert(SSL *ssl, uint8_t alert) {
|
||
const TestConfig *config = GetTestConfig(ssl);
|
||
int ret;
|
||
do {
|
||
ret = SSL_send_fatal_alert(ssl, alert);
|
||
} while (config->async && RetryAsync(ssl, ret));
|
||
return ret;
|
||
}
|
||
|
||
static uint16_t GetProtocolVersion(const SSL *ssl) {
|
||
uint16_t version = SSL_version(ssl);
|
||
if (!SSL_is_dtls(ssl)) {
|
||
return version;
|
||
}
|
||
return 0x0201 + ~version;
|
||
}
|
||
|
||
// CheckHandshakeProperties checks, immediately after |ssl| completes its
|
||
// initial handshake (or False Starts), whether all the properties are
|
||
// consistent with the test configuration and invariants.
|
||
static bool CheckHandshakeProperties(SSL *ssl, bool is_resume) {
|
||
const TestConfig *config = GetTestConfig(ssl);
|
||
|
||
if (SSL_get_current_cipher(ssl) == nullptr) {
|
||
fprintf(stderr, "null cipher after handshake\n");
|
||
return false;
|
||
}
|
||
|
||
if (is_resume &&
|
||
(!!SSL_session_reused(ssl) == config->expect_session_miss)) {
|
||
fprintf(stderr, "session was%s reused\n",
|
||
SSL_session_reused(ssl) ? "" : " not");
|
||
return false;
|
||
}
|
||
|
||
bool expect_handshake_done =
|
||
(is_resume || !config->false_start) &&
|
||
!(config->is_server && SSL_early_data_accepted(ssl));
|
||
if (expect_handshake_done != GetTestState(ssl)->handshake_done) {
|
||
fprintf(stderr, "handshake was%s completed\n",
|
||
GetTestState(ssl)->handshake_done ? "" : " not");
|
||
return false;
|
||
}
|
||
|
||
if (expect_handshake_done && !config->is_server) {
|
||
bool expect_new_session =
|
||
!config->expect_no_session &&
|
||
(!SSL_session_reused(ssl) || config->expect_ticket_renewal) &&
|
||
// Session tickets are sent post-handshake in TLS 1.3.
|
||
GetProtocolVersion(ssl) < TLS1_3_VERSION;
|
||
if (expect_new_session != GetTestState(ssl)->got_new_session) {
|
||
fprintf(stderr,
|
||
"new session was%s cached, but we expected the opposite\n",
|
||
GetTestState(ssl)->got_new_session ? "" : " not");
|
||
return false;
|
||
}
|
||
}
|
||
|
||
if (!is_resume) {
|
||
if (config->expect_session_id && !GetTestState(ssl)->got_new_session) {
|
||
fprintf(stderr, "session was not cached on the server.\n");
|
||
return false;
|
||
}
|
||
if (config->expect_no_session_id && GetTestState(ssl)->got_new_session) {
|
||
fprintf(stderr, "session was unexpectedly cached on the server.\n");
|
||
return false;
|
||
}
|
||
}
|
||
|
||
if (config->is_server && !GetTestState(ssl)->early_callback_called) {
|
||
fprintf(stderr, "early callback not called\n");
|
||
return false;
|
||
}
|
||
|
||
if (!config->expected_server_name.empty()) {
|
||
const char *server_name =
|
||
SSL_get_servername(ssl, TLSEXT_NAMETYPE_host_name);
|
||
if (server_name == nullptr ||
|
||
server_name != config->expected_server_name) {
|
||
fprintf(stderr, "servername mismatch (got %s; want %s)\n",
|
||
server_name, config->expected_server_name.c_str());
|
||
return false;
|
||
}
|
||
}
|
||
|
||
if (!config->expected_next_proto.empty()) {
|
||
const uint8_t *next_proto;
|
||
unsigned next_proto_len;
|
||
SSL_get0_next_proto_negotiated(ssl, &next_proto, &next_proto_len);
|
||
if (next_proto_len != config->expected_next_proto.size() ||
|
||
OPENSSL_memcmp(next_proto, config->expected_next_proto.data(),
|
||
next_proto_len) != 0) {
|
||
fprintf(stderr, "negotiated next proto mismatch\n");
|
||
return false;
|
||
}
|
||
}
|
||
|
||
std::string expected_alpn = config->expected_alpn;
|
||
if (is_resume && !config->expected_resume_alpn.empty()) {
|
||
expected_alpn = config->expected_resume_alpn;
|
||
}
|
||
bool expect_no_alpn = (!is_resume && config->expect_no_alpn) ||
|
||
(is_resume && config->expect_no_resume_alpn);
|
||
if (expect_no_alpn) {
|
||
expected_alpn.clear();
|
||
}
|
||
|
||
if (!expected_alpn.empty() || expect_no_alpn) {
|
||
const uint8_t *alpn_proto;
|
||
unsigned alpn_proto_len;
|
||
SSL_get0_alpn_selected(ssl, &alpn_proto, &alpn_proto_len);
|
||
if (alpn_proto_len != expected_alpn.size() ||
|
||
OPENSSL_memcmp(alpn_proto, expected_alpn.data(), alpn_proto_len) != 0) {
|
||
fprintf(stderr, "negotiated alpn proto mismatch\n");
|
||
return false;
|
||
}
|
||
}
|
||
|
||
if (!config->expected_channel_id.empty()) {
|
||
uint8_t channel_id[64];
|
||
if (!SSL_get_tls_channel_id(ssl, channel_id, sizeof(channel_id))) {
|
||
fprintf(stderr, "no channel id negotiated\n");
|
||
return false;
|
||
}
|
||
if (config->expected_channel_id.size() != 64 ||
|
||
OPENSSL_memcmp(config->expected_channel_id.data(), channel_id, 64) !=
|
||
0) {
|
||
fprintf(stderr, "channel id mismatch\n");
|
||
return false;
|
||
}
|
||
}
|
||
|
||
if (config->expect_extended_master_secret && !SSL_get_extms_support(ssl)) {
|
||
fprintf(stderr, "No EMS for connection when expected\n");
|
||
return false;
|
||
}
|
||
|
||
if (config->expect_secure_renegotiation &&
|
||
!SSL_get_secure_renegotiation_support(ssl)) {
|
||
fprintf(stderr, "No secure renegotiation for connection when expected\n");
|
||
return false;
|
||
}
|
||
|
||
if (config->expect_no_secure_renegotiation &&
|
||
SSL_get_secure_renegotiation_support(ssl)) {
|
||
fprintf(stderr,
|
||
"Secure renegotiation unexpectedly negotiated for connection\n");
|
||
return false;
|
||
}
|
||
|
||
if (!config->expected_ocsp_response.empty()) {
|
||
const uint8_t *data;
|
||
size_t len;
|
||
SSL_get0_ocsp_response(ssl, &data, &len);
|
||
if (config->expected_ocsp_response.size() != len ||
|
||
OPENSSL_memcmp(config->expected_ocsp_response.data(), data, len) != 0) {
|
||
fprintf(stderr, "OCSP response mismatch\n");
|
||
return false;
|
||
}
|
||
}
|
||
|
||
if (!config->expected_signed_cert_timestamps.empty()) {
|
||
const uint8_t *data;
|
||
size_t len;
|
||
SSL_get0_signed_cert_timestamp_list(ssl, &data, &len);
|
||
if (config->expected_signed_cert_timestamps.size() != len ||
|
||
OPENSSL_memcmp(config->expected_signed_cert_timestamps.data(), data,
|
||
len) != 0) {
|
||
fprintf(stderr, "SCT list mismatch\n");
|
||
return false;
|
||
}
|
||
}
|
||
|
||
if (config->expect_verify_result) {
|
||
int expected_verify_result = config->verify_fail ?
|
||
X509_V_ERR_APPLICATION_VERIFICATION :
|
||
X509_V_OK;
|
||
|
||
if (SSL_get_verify_result(ssl) != expected_verify_result) {
|
||
fprintf(stderr, "Wrong certificate verification result\n");
|
||
return false;
|
||
}
|
||
}
|
||
|
||
if (config->expect_peer_signature_algorithm != 0 &&
|
||
config->expect_peer_signature_algorithm !=
|
||
SSL_get_peer_signature_algorithm(ssl)) {
|
||
fprintf(stderr, "Peer signature algorithm was %04x, wanted %04x.\n",
|
||
SSL_get_peer_signature_algorithm(ssl),
|
||
config->expect_peer_signature_algorithm);
|
||
return false;
|
||
}
|
||
|
||
int expect_curve_id = config->expect_curve_id;
|
||
if (is_resume && config->expect_resume_curve_id != 0) {
|
||
expect_curve_id = config->expect_resume_curve_id;
|
||
}
|
||
if (expect_curve_id != 0) {
|
||
uint16_t curve_id = SSL_get_curve_id(ssl);
|
||
if (static_cast<uint16_t>(expect_curve_id) != curve_id) {
|
||
fprintf(stderr, "curve_id was %04x, wanted %04x\n", curve_id,
|
||
static_cast<uint16_t>(expect_curve_id));
|
||
return false;
|
||
}
|
||
}
|
||
|
||
uint16_t cipher_id =
|
||
static_cast<uint16_t>(SSL_CIPHER_get_id(SSL_get_current_cipher(ssl)));
|
||
if (config->expect_cipher_aes != 0 &&
|
||
EVP_has_aes_hardware() &&
|
||
static_cast<uint16_t>(config->expect_cipher_aes) != cipher_id) {
|
||
fprintf(stderr, "Cipher ID was %04x, wanted %04x (has AES hardware)\n",
|
||
cipher_id, static_cast<uint16_t>(config->expect_cipher_aes));
|
||
return false;
|
||
}
|
||
|
||
if (config->expect_cipher_no_aes != 0 &&
|
||
!EVP_has_aes_hardware() &&
|
||
static_cast<uint16_t>(config->expect_cipher_no_aes) != cipher_id) {
|
||
fprintf(stderr, "Cipher ID was %04x, wanted %04x (no AES hardware)\n",
|
||
cipher_id, static_cast<uint16_t>(config->expect_cipher_no_aes));
|
||
return false;
|
||
}
|
||
|
||
if (is_resume) {
|
||
if ((config->expect_accept_early_data && !SSL_early_data_accepted(ssl)) ||
|
||
(config->expect_reject_early_data && SSL_early_data_accepted(ssl))) {
|
||
fprintf(stderr,
|
||
"Early data was%s accepted, but we expected the opposite\n",
|
||
SSL_early_data_accepted(ssl) ? "" : " not");
|
||
return false;
|
||
}
|
||
}
|
||
|
||
if (!config->psk.empty()) {
|
||
if (SSL_get_peer_cert_chain(ssl) != nullptr) {
|
||
fprintf(stderr, "Received peer certificate on a PSK cipher.\n");
|
||
return false;
|
||
}
|
||
} else if (!config->is_server || config->require_any_client_certificate) {
|
||
if (SSL_get_peer_cert_chain(ssl) == nullptr) {
|
||
fprintf(stderr, "Received no peer certificate but expected one.\n");
|
||
return false;
|
||
}
|
||
}
|
||
|
||
if (!config->expect_peer_cert_file.empty()) {
|
||
bssl::UniquePtr<X509> expect_leaf;
|
||
bssl::UniquePtr<STACK_OF(X509)> expect_chain;
|
||
if (!LoadCertificate(&expect_leaf, &expect_chain,
|
||
config->expect_peer_cert_file)) {
|
||
return false;
|
||
}
|
||
|
||
// For historical reasons, clients report a chain with a leaf and servers
|
||
// without.
|
||
if (!config->is_server) {
|
||
if (!sk_X509_insert(expect_chain.get(), expect_leaf.get(), 0)) {
|
||
return false;
|
||
}
|
||
X509_up_ref(expect_leaf.get()); // sk_X509_push takes ownership.
|
||
}
|
||
|
||
bssl::UniquePtr<X509> leaf(SSL_get_peer_certificate(ssl));
|
||
STACK_OF(X509) *chain = SSL_get_peer_cert_chain(ssl);
|
||
if (X509_cmp(leaf.get(), expect_leaf.get()) != 0) {
|
||
fprintf(stderr, "Received a different leaf certificate than expected.\n");
|
||
return false;
|
||
}
|
||
|
||
if (sk_X509_num(chain) != sk_X509_num(expect_chain.get())) {
|
||
fprintf(stderr, "Received a chain of length %zu instead of %zu.\n",
|
||
sk_X509_num(chain), sk_X509_num(expect_chain.get()));
|
||
return false;
|
||
}
|
||
|
||
for (size_t i = 0; i < sk_X509_num(chain); i++) {
|
||
if (X509_cmp(sk_X509_value(chain, i),
|
||
sk_X509_value(expect_chain.get(), i)) != 0) {
|
||
fprintf(stderr, "Chain certificate %zu did not match.\n",
|
||
i + 1);
|
||
return false;
|
||
}
|
||
}
|
||
}
|
||
|
||
bool expected_sha256_client_cert = config->expect_sha256_client_cert_initial;
|
||
if (is_resume) {
|
||
expected_sha256_client_cert = config->expect_sha256_client_cert_resume;
|
||
}
|
||
|
||
if (SSL_get_session(ssl)->peer_sha256_valid != expected_sha256_client_cert) {
|
||
fprintf(stderr,
|
||
"Unexpected SHA-256 client cert state: expected:%d is_resume:%d.\n",
|
||
expected_sha256_client_cert, is_resume);
|
||
return false;
|
||
}
|
||
|
||
if (expected_sha256_client_cert &&
|
||
SSL_get_session(ssl)->certs != nullptr) {
|
||
fprintf(stderr, "Have both client cert and SHA-256 hash: is_resume:%d.\n",
|
||
is_resume);
|
||
return false;
|
||
}
|
||
|
||
if (is_resume && config->expect_ticket_age_skew != 0 &&
|
||
SSL_get_ticket_age_skew(ssl) != config->expect_ticket_age_skew) {
|
||
fprintf(stderr, "Ticket age skew was %" PRId32 ", wanted %d\n",
|
||
SSL_get_ticket_age_skew(ssl), config->expect_ticket_age_skew);
|
||
return false;
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
// DoExchange runs a test SSL exchange against the peer. On success, it returns
|
||
// true and sets |*out_session| to the negotiated SSL session. If the test is a
|
||
// resumption attempt, |is_resume| is true and |session| is the session from the
|
||
// previous exchange.
|
||
static bool DoExchange(bssl::UniquePtr<SSL_SESSION> *out_session,
|
||
SSL_CTX *ssl_ctx, const TestConfig *config,
|
||
bool is_resume, SSL_SESSION *session) {
|
||
if (is_resume && config->enable_resume_early_data) {
|
||
SSL_CTX_set_early_data_enabled(ssl_ctx, 1);
|
||
}
|
||
|
||
bssl::UniquePtr<SSL> ssl(SSL_new(ssl_ctx));
|
||
if (!ssl) {
|
||
return false;
|
||
}
|
||
|
||
if (!SetTestConfig(ssl.get(), config) ||
|
||
!SetTestState(ssl.get(), std::unique_ptr<TestState>(new TestState))) {
|
||
return false;
|
||
}
|
||
|
||
GetTestState(ssl.get())->is_resume = is_resume;
|
||
|
||
if (config->fallback_scsv &&
|
||
!SSL_set_mode(ssl.get(), SSL_MODE_SEND_FALLBACK_SCSV)) {
|
||
return false;
|
||
}
|
||
// Install the certificate synchronously if nothing else will handle it.
|
||
if (!config->use_early_callback &&
|
||
!config->use_old_client_cert_callback &&
|
||
!config->async &&
|
||
!InstallCertificate(ssl.get())) {
|
||
return false;
|
||
}
|
||
if (!config->use_old_client_cert_callback) {
|
||
SSL_set_cert_cb(ssl.get(), CertCallback, nullptr);
|
||
}
|
||
if (config->require_any_client_certificate) {
|
||
SSL_set_verify(ssl.get(), SSL_VERIFY_PEER|SSL_VERIFY_FAIL_IF_NO_PEER_CERT,
|
||
NULL);
|
||
}
|
||
if (config->verify_peer) {
|
||
SSL_set_verify(ssl.get(), SSL_VERIFY_PEER, NULL);
|
||
}
|
||
if (config->false_start) {
|
||
SSL_set_mode(ssl.get(), SSL_MODE_ENABLE_FALSE_START);
|
||
}
|
||
if (config->cbc_record_splitting) {
|
||
SSL_set_mode(ssl.get(), SSL_MODE_CBC_RECORD_SPLITTING);
|
||
}
|
||
if (config->partial_write) {
|
||
SSL_set_mode(ssl.get(), SSL_MODE_ENABLE_PARTIAL_WRITE);
|
||
}
|
||
if (config->no_tls13) {
|
||
SSL_set_options(ssl.get(), SSL_OP_NO_TLSv1_3);
|
||
}
|
||
if (config->no_tls12) {
|
||
SSL_set_options(ssl.get(), SSL_OP_NO_TLSv1_2);
|
||
}
|
||
if (config->no_tls11) {
|
||
SSL_set_options(ssl.get(), SSL_OP_NO_TLSv1_1);
|
||
}
|
||
if (config->no_tls1) {
|
||
SSL_set_options(ssl.get(), SSL_OP_NO_TLSv1);
|
||
}
|
||
if (config->no_ssl3) {
|
||
SSL_set_options(ssl.get(), SSL_OP_NO_SSLv3);
|
||
}
|
||
if (!config->expected_channel_id.empty() ||
|
||
config->enable_channel_id) {
|
||
SSL_set_tls_channel_id_enabled(ssl.get(), 1);
|
||
}
|
||
if (!config->send_channel_id.empty()) {
|
||
SSL_set_tls_channel_id_enabled(ssl.get(), 1);
|
||
if (!config->async) {
|
||
// The async case will be supplied by |ChannelIdCallback|.
|
||
bssl::UniquePtr<EVP_PKEY> pkey = LoadPrivateKey(config->send_channel_id);
|
||
if (!pkey || !SSL_set1_tls_channel_id(ssl.get(), pkey.get())) {
|
||
return false;
|
||
}
|
||
}
|
||
}
|
||
if (!config->host_name.empty() &&
|
||
!SSL_set_tlsext_host_name(ssl.get(), config->host_name.c_str())) {
|
||
return false;
|
||
}
|
||
if (!config->advertise_alpn.empty() &&
|
||
SSL_set_alpn_protos(ssl.get(),
|
||
(const uint8_t *)config->advertise_alpn.data(),
|
||
config->advertise_alpn.size()) != 0) {
|
||
return false;
|
||
}
|
||
if (!config->psk.empty()) {
|
||
SSL_set_psk_client_callback(ssl.get(), PskClientCallback);
|
||
SSL_set_psk_server_callback(ssl.get(), PskServerCallback);
|
||
}
|
||
if (!config->psk_identity.empty() &&
|
||
!SSL_use_psk_identity_hint(ssl.get(), config->psk_identity.c_str())) {
|
||
return false;
|
||
}
|
||
if (!config->srtp_profiles.empty() &&
|
||
!SSL_set_srtp_profiles(ssl.get(), config->srtp_profiles.c_str())) {
|
||
return false;
|
||
}
|
||
if (config->enable_ocsp_stapling) {
|
||
SSL_enable_ocsp_stapling(ssl.get());
|
||
}
|
||
if (config->enable_signed_cert_timestamps) {
|
||
SSL_enable_signed_cert_timestamps(ssl.get());
|
||
}
|
||
if (config->min_version != 0 &&
|
||
!SSL_set_min_proto_version(ssl.get(), (uint16_t)config->min_version)) {
|
||
return false;
|
||
}
|
||
if (config->max_version != 0 &&
|
||
!SSL_set_max_proto_version(ssl.get(), (uint16_t)config->max_version)) {
|
||
return false;
|
||
}
|
||
if (config->mtu != 0) {
|
||
SSL_set_options(ssl.get(), SSL_OP_NO_QUERY_MTU);
|
||
SSL_set_mtu(ssl.get(), config->mtu);
|
||
}
|
||
if (config->install_ddos_callback) {
|
||
SSL_CTX_set_dos_protection_cb(ssl_ctx, DDoSCallback);
|
||
}
|
||
if (config->renegotiate_once) {
|
||
SSL_set_renegotiate_mode(ssl.get(), ssl_renegotiate_once);
|
||
}
|
||
if (config->renegotiate_freely) {
|
||
SSL_set_renegotiate_mode(ssl.get(), ssl_renegotiate_freely);
|
||
}
|
||
if (config->renegotiate_ignore) {
|
||
SSL_set_renegotiate_mode(ssl.get(), ssl_renegotiate_ignore);
|
||
}
|
||
if (!config->check_close_notify) {
|
||
SSL_set_quiet_shutdown(ssl.get(), 1);
|
||
}
|
||
if (config->p384_only) {
|
||
int nid = NID_secp384r1;
|
||
if (!SSL_set1_curves(ssl.get(), &nid, 1)) {
|
||
return false;
|
||
}
|
||
}
|
||
if (config->enable_all_curves) {
|
||
static const int kAllCurves[] = {
|
||
NID_secp224r1, NID_X9_62_prime256v1, NID_secp384r1,
|
||
NID_secp521r1, NID_X25519,
|
||
};
|
||
if (!SSL_set1_curves(ssl.get(), kAllCurves,
|
||
OPENSSL_ARRAY_SIZE(kAllCurves))) {
|
||
return false;
|
||
}
|
||
}
|
||
if (config->initial_timeout_duration_ms > 0) {
|
||
DTLSv1_set_initial_timeout_duration(ssl.get(),
|
||
config->initial_timeout_duration_ms);
|
||
}
|
||
if (config->max_cert_list > 0) {
|
||
SSL_set_max_cert_list(ssl.get(), config->max_cert_list);
|
||
}
|
||
if (!is_resume && config->retain_only_sha256_client_cert_initial) {
|
||
SSL_set_retain_only_sha256_of_client_certs(ssl.get(), 1);
|
||
}
|
||
if (is_resume && config->retain_only_sha256_client_cert_resume) {
|
||
SSL_set_retain_only_sha256_of_client_certs(ssl.get(), 1);
|
||
}
|
||
if (config->max_send_fragment > 0) {
|
||
SSL_set_max_send_fragment(ssl.get(), config->max_send_fragment);
|
||
}
|
||
|
||
int sock = Connect(config->port);
|
||
if (sock == -1) {
|
||
return false;
|
||
}
|
||
SocketCloser closer(sock);
|
||
|
||
bssl::UniquePtr<BIO> bio(BIO_new_socket(sock, BIO_NOCLOSE));
|
||
if (!bio) {
|
||
return false;
|
||
}
|
||
if (config->is_dtls) {
|
||
bssl::UniquePtr<BIO> packeted = PacketedBioCreate(&g_clock);
|
||
if (!packeted) {
|
||
return false;
|
||
}
|
||
GetTestState(ssl.get())->packeted_bio = packeted.get();
|
||
BIO_push(packeted.get(), bio.release());
|
||
bio = std::move(packeted);
|
||
}
|
||
if (config->async) {
|
||
bssl::UniquePtr<BIO> async_scoped =
|
||
config->is_dtls ? AsyncBioCreateDatagram() : AsyncBioCreate();
|
||
if (!async_scoped) {
|
||
return false;
|
||
}
|
||
BIO_push(async_scoped.get(), bio.release());
|
||
GetTestState(ssl.get())->async_bio = async_scoped.get();
|
||
bio = std::move(async_scoped);
|
||
}
|
||
SSL_set_bio(ssl.get(), bio.get(), bio.get());
|
||
bio.release(); // SSL_set_bio takes ownership.
|
||
|
||
if (session != NULL) {
|
||
if (!config->is_server) {
|
||
if (SSL_set_session(ssl.get(), session) != 1) {
|
||
return false;
|
||
}
|
||
} else if (config->async) {
|
||
// The internal session cache is disabled, so install the session
|
||
// manually.
|
||
SSL_SESSION_up_ref(session);
|
||
GetTestState(ssl.get())->pending_session.reset(session);
|
||
}
|
||
}
|
||
|
||
if (SSL_get_current_cipher(ssl.get()) != nullptr) {
|
||
fprintf(stderr, "non-null cipher before handshake\n");
|
||
return false;
|
||
}
|
||
|
||
if (config->is_server) {
|
||
SSL_set_accept_state(ssl.get());
|
||
} else {
|
||
SSL_set_connect_state(ssl.get());
|
||
}
|
||
|
||
int ret;
|
||
if (!config->implicit_handshake) {
|
||
do {
|
||
ret = SSL_do_handshake(ssl.get());
|
||
} while (config->async && RetryAsync(ssl.get(), ret));
|
||
if (ret != 1 ||
|
||
!CheckHandshakeProperties(ssl.get(), is_resume)) {
|
||
return false;
|
||
}
|
||
|
||
if (config->handshake_twice) {
|
||
do {
|
||
ret = SSL_do_handshake(ssl.get());
|
||
} while (config->async && RetryAsync(ssl.get(), ret));
|
||
if (ret != 1) {
|
||
return false;
|
||
}
|
||
}
|
||
|
||
// Skip the |config->async| logic as this should be a no-op.
|
||
if (config->no_op_extra_handshake &&
|
||
SSL_do_handshake(ssl.get()) != 1) {
|
||
fprintf(stderr, "Extra SSL_do_handshake was not a no-op.\n");
|
||
return false;
|
||
}
|
||
|
||
// Reset the state to assert later that the callback isn't called in
|
||
// renegotations.
|
||
GetTestState(ssl.get())->got_new_session = false;
|
||
}
|
||
|
||
if (config->export_keying_material > 0) {
|
||
std::vector<uint8_t> result(
|
||
static_cast<size_t>(config->export_keying_material));
|
||
if (!SSL_export_keying_material(
|
||
ssl.get(), result.data(), result.size(),
|
||
config->export_label.data(), config->export_label.size(),
|
||
reinterpret_cast<const uint8_t*>(config->export_context.data()),
|
||
config->export_context.size(), config->use_export_context)) {
|
||
fprintf(stderr, "failed to export keying material\n");
|
||
return false;
|
||
}
|
||
if (WriteAll(ssl.get(), result.data(), result.size()) < 0) {
|
||
return false;
|
||
}
|
||
}
|
||
|
||
if (config->tls_unique) {
|
||
uint8_t tls_unique[16];
|
||
size_t tls_unique_len;
|
||
if (!SSL_get_tls_unique(ssl.get(), tls_unique, &tls_unique_len,
|
||
sizeof(tls_unique))) {
|
||
fprintf(stderr, "failed to get tls-unique\n");
|
||
return false;
|
||
}
|
||
|
||
if (tls_unique_len != 12) {
|
||
fprintf(stderr, "expected 12 bytes of tls-unique but got %u",
|
||
static_cast<unsigned>(tls_unique_len));
|
||
return false;
|
||
}
|
||
|
||
if (WriteAll(ssl.get(), tls_unique, tls_unique_len) < 0) {
|
||
return false;
|
||
}
|
||
}
|
||
|
||
if (config->send_alert) {
|
||
if (DoSendFatalAlert(ssl.get(), SSL_AD_DECOMPRESSION_FAILURE) < 0) {
|
||
return false;
|
||
}
|
||
return true;
|
||
}
|
||
|
||
if (config->write_different_record_sizes) {
|
||
if (config->is_dtls) {
|
||
fprintf(stderr, "write_different_record_sizes not supported for DTLS\n");
|
||
return false;
|
||
}
|
||
// This mode writes a number of different record sizes in an attempt to
|
||
// trip up the CBC record splitting code.
|
||
static const size_t kBufLen = 32769;
|
||
std::unique_ptr<uint8_t[]> buf(new uint8_t[kBufLen]);
|
||
OPENSSL_memset(buf.get(), 0x42, kBufLen);
|
||
static const size_t kRecordSizes[] = {
|
||
0, 1, 255, 256, 257, 16383, 16384, 16385, 32767, 32768, 32769};
|
||
for (size_t i = 0; i < OPENSSL_ARRAY_SIZE(kRecordSizes); i++) {
|
||
const size_t len = kRecordSizes[i];
|
||
if (len > kBufLen) {
|
||
fprintf(stderr, "Bad kRecordSizes value.\n");
|
||
return false;
|
||
}
|
||
if (WriteAll(ssl.get(), buf.get(), len) < 0) {
|
||
return false;
|
||
}
|
||
}
|
||
} else {
|
||
if (config->read_with_unfinished_write) {
|
||
if (!config->async) {
|
||
fprintf(stderr, "-read-with-unfinished-write requires -async.\n");
|
||
return false;
|
||
}
|
||
|
||
int write_ret = SSL_write(ssl.get(),
|
||
reinterpret_cast<const uint8_t *>("unfinished"), 10);
|
||
if (SSL_get_error(ssl.get(), write_ret) != SSL_ERROR_WANT_WRITE) {
|
||
fprintf(stderr, "Failed to leave unfinished write.\n");
|
||
return false;
|
||
}
|
||
}
|
||
if (config->shim_writes_first) {
|
||
if (WriteAll(ssl.get(), reinterpret_cast<const uint8_t *>("hello"),
|
||
5) < 0) {
|
||
return false;
|
||
}
|
||
}
|
||
if (!config->shim_shuts_down) {
|
||
for (;;) {
|
||
// Read only 512 bytes at a time in TLS to ensure records may be
|
||
// returned in multiple reads.
|
||
size_t read_size = config->is_dtls ? 16384 : 512;
|
||
if (config->read_size > 0) {
|
||
read_size = config->read_size;
|
||
}
|
||
std::unique_ptr<uint8_t[]> buf(new uint8_t[read_size]);
|
||
|
||
int n = DoRead(ssl.get(), buf.get(), read_size);
|
||
int err = SSL_get_error(ssl.get(), n);
|
||
if (err == SSL_ERROR_ZERO_RETURN ||
|
||
(n == 0 && err == SSL_ERROR_SYSCALL)) {
|
||
if (n != 0) {
|
||
fprintf(stderr, "Invalid SSL_get_error output\n");
|
||
return false;
|
||
}
|
||
// Stop on either clean or unclean shutdown.
|
||
break;
|
||
} else if (err != SSL_ERROR_NONE) {
|
||
if (n > 0) {
|
||
fprintf(stderr, "Invalid SSL_get_error output\n");
|
||
return false;
|
||
}
|
||
return false;
|
||
}
|
||
// Successfully read data.
|
||
if (n <= 0) {
|
||
fprintf(stderr, "Invalid SSL_get_error output\n");
|
||
return false;
|
||
}
|
||
|
||
// After a successful read, with or without False Start, the handshake
|
||
// must be complete unless we are doing early data.
|
||
if (!GetTestState(ssl.get())->handshake_done &&
|
||
!SSL_early_data_accepted(ssl.get())) {
|
||
fprintf(stderr, "handshake was not completed after SSL_read\n");
|
||
return false;
|
||
}
|
||
|
||
for (int i = 0; i < n; i++) {
|
||
buf[i] ^= 0xff;
|
||
}
|
||
if (WriteAll(ssl.get(), buf.get(), n) < 0) {
|
||
return false;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
if (!config->is_server && !config->false_start &&
|
||
!config->implicit_handshake &&
|
||
// Session tickets are sent post-handshake in TLS 1.3.
|
||
GetProtocolVersion(ssl.get()) < TLS1_3_VERSION &&
|
||
GetTestState(ssl.get())->got_new_session) {
|
||
fprintf(stderr, "new session was established after the handshake\n");
|
||
return false;
|
||
}
|
||
|
||
if (GetProtocolVersion(ssl.get()) >= TLS1_3_VERSION && !config->is_server) {
|
||
bool expect_new_session =
|
||
!config->expect_no_session && !config->shim_shuts_down;
|
||
if (expect_new_session != GetTestState(ssl.get())->got_new_session) {
|
||
fprintf(stderr,
|
||
"new session was%s cached, but we expected the opposite\n",
|
||
GetTestState(ssl.get())->got_new_session ? "" : " not");
|
||
return false;
|
||
}
|
||
|
||
if (expect_new_session) {
|
||
bool got_early_data_info =
|
||
GetTestState(ssl.get())->new_session->ticket_max_early_data != 0;
|
||
if (config->expect_early_data_info != got_early_data_info) {
|
||
fprintf(
|
||
stderr,
|
||
"new session did%s include ticket_early_data_info, but we expected "
|
||
"the opposite\n",
|
||
got_early_data_info ? "" : " not");
|
||
return false;
|
||
}
|
||
}
|
||
}
|
||
|
||
if (out_session) {
|
||
*out_session = std::move(GetTestState(ssl.get())->new_session);
|
||
}
|
||
|
||
ret = DoShutdown(ssl.get());
|
||
|
||
if (config->shim_shuts_down && config->check_close_notify) {
|
||
// We initiate shutdown, so |SSL_shutdown| will return in two stages. First
|
||
// it returns zero when our close_notify is sent, then one when the peer's
|
||
// is received.
|
||
if (ret != 0) {
|
||
fprintf(stderr, "Unexpected SSL_shutdown result: %d != 0\n", ret);
|
||
return false;
|
||
}
|
||
ret = DoShutdown(ssl.get());
|
||
}
|
||
|
||
if (ret != 1) {
|
||
fprintf(stderr, "Unexpected SSL_shutdown result: %d != 1\n", ret);
|
||
return false;
|
||
}
|
||
|
||
if (SSL_total_renegotiations(ssl.get()) !=
|
||
config->expect_total_renegotiations) {
|
||
fprintf(stderr, "Expected %d renegotiations, got %d\n",
|
||
config->expect_total_renegotiations,
|
||
SSL_total_renegotiations(ssl.get()));
|
||
return false;
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
class StderrDelimiter {
|
||
public:
|
||
~StderrDelimiter() { fprintf(stderr, "--- DONE ---\n"); }
|
||
};
|
||
|
||
int main(int argc, char **argv) {
|
||
// To distinguish ASan's output from ours, add a trailing message to stderr.
|
||
// Anything following this line will be considered an error.
|
||
StderrDelimiter delimiter;
|
||
|
||
#if defined(OPENSSL_WINDOWS)
|
||
/* Initialize Winsock. */
|
||
WORD wsa_version = MAKEWORD(2, 2);
|
||
WSADATA wsa_data;
|
||
int wsa_err = WSAStartup(wsa_version, &wsa_data);
|
||
if (wsa_err != 0) {
|
||
fprintf(stderr, "WSAStartup failed: %d\n", wsa_err);
|
||
return 1;
|
||
}
|
||
if (wsa_data.wVersion != wsa_version) {
|
||
fprintf(stderr, "Didn't get expected version: %x\n", wsa_data.wVersion);
|
||
return 1;
|
||
}
|
||
#else
|
||
signal(SIGPIPE, SIG_IGN);
|
||
#endif
|
||
|
||
CRYPTO_library_init();
|
||
g_config_index = SSL_get_ex_new_index(0, NULL, NULL, NULL, NULL);
|
||
g_state_index = SSL_get_ex_new_index(0, NULL, NULL, NULL, TestStateExFree);
|
||
if (g_config_index < 0 || g_state_index < 0) {
|
||
return 1;
|
||
}
|
||
|
||
TestConfig config;
|
||
if (!ParseConfig(argc - 1, argv + 1, &config)) {
|
||
return Usage(argv[0]);
|
||
}
|
||
|
||
g_pool = CRYPTO_BUFFER_POOL_new();
|
||
|
||
// Some code treats the zero time special, so initialize the clock to a
|
||
// non-zero time.
|
||
g_clock.tv_sec = 1234;
|
||
g_clock.tv_usec = 1234;
|
||
|
||
bssl::UniquePtr<SSL_CTX> ssl_ctx = SetupCtx(&config);
|
||
if (!ssl_ctx) {
|
||
ERR_print_errors_fp(stderr);
|
||
return 1;
|
||
}
|
||
|
||
bssl::UniquePtr<SSL_SESSION> session;
|
||
for (int i = 0; i < config.resume_count + 1; i++) {
|
||
bool is_resume = i > 0;
|
||
if (is_resume && !config.is_server && !session) {
|
||
fprintf(stderr, "No session to offer.\n");
|
||
return 1;
|
||
}
|
||
|
||
bssl::UniquePtr<SSL_SESSION> offer_session = std::move(session);
|
||
if (!DoExchange(&session, ssl_ctx.get(), &config, is_resume,
|
||
offer_session.get())) {
|
||
fprintf(stderr, "Connection %d failed.\n", i + 1);
|
||
ERR_print_errors_fp(stderr);
|
||
return 1;
|
||
}
|
||
|
||
if (config.resumption_delay != 0) {
|
||
g_clock.tv_sec += config.resumption_delay;
|
||
}
|
||
}
|
||
|
||
return 0;
|
||
}
|