63c79122e0
This partitions the session ID space of the internal cache by version, which is nominally something we want, but we must check the version externally anyway for both tickets and external session cache. That makes this measure redundant. (Servers generate session IDs and 2^256 is huge, so there would never accidentally be a collision.) This cuts down on the "key" in the internal session cache, which will simplify adding something like an lh_SSL_SESSION_retrieve_key function. (LHASH is currently lax about keys because it can freely stack-allocate partially-initialized structs. C++ is a bit more finicky about this.) Change-Id: I656fd9dbf023dccb163d2e8049eff8f1f9a0e21b Reviewed-on: https://boringssl-review.googlesource.com/29585 Commit-Queue: David Benjamin <davidben@google.com> CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org> Reviewed-by: Adam Langley <agl@google.com> |
||
---|---|---|
.. | ||
runner | ||
async_bio.cc | ||
async_bio.h | ||
bssl_shim.cc | ||
CMakeLists.txt | ||
fuzzer_tags.h | ||
fuzzer.h | ||
packeted_bio.cc | ||
packeted_bio.h | ||
PORTING.md | ||
README.md | ||
settings_writer.cc | ||
settings_writer.h | ||
test_config.cc | ||
test_config.h |
BoringSSL SSL Tests
This directory contains BoringSSL's protocol-level test suite.
Testing a TLS implementation can be difficult. We need to produce invalid but sufficiently correct handshakes to get our implementation close to its edge cases. TLS's cryptographic steps mean we cannot use a transcript and effectively need a TLS implementation on the other end. But we do not wish to litter BoringSSL with options for bugs to test against.
Instead, we use a fork of the Go crypto/tls
package, heavily patched with
configurable bugs. This code, along with a test suite and harness written in Go,
lives in the runner
directory. The harness runs BoringSSL via a C/C++ shim
binary which lives in this directory. All communication with the shim binary
occurs with command-line flags, sockets, and standard I/O.
This strategy also ensures we always test against a second implementation. All features should be implemented twice, once in C for BoringSSL and once in Go for testing. If possible, the Go code should be suitable for potentially upstreaming. However, sometimes test code has different needs. For example, our test DTLS code enforces strict ordering on sequence numbers and has controlled packet drop simulation.
To run the tests manually, run go test
from the runner
directory. It takes
command-line flags found at the top of runner/runner.go
. The -help
option
also works after using go test -c
to make a runner.test
binary first.
If adding a new test, these files may be a good starting point:
runner/runner.go
: the test harness and all the individual tests.runner/common.go
: contains theConfig
andProtocolBugs
struct which control the Go TLS implementation's behavior.test_config.h
,test_config.cc
: the command-line flags which control the shim's behavior.bssl_shim.cc
: the shim binary itself.
For porting the test suite to a different implementation see PORTING.md.