boringssl/crypto/cpu-x86_64-asm.pl
Adam Langley 97999919bb Hide all asm symbols.
We are leaking asm symbols in Android builds because the asm code isn't
affected by -fvisibility=hidden. This change hides all asm symbols.

This assumes that no asm symbols are public API and that should be true.
Some points to note:

In crypto/rc4/asm/rc4-md5-x86_64.pl there are |RC4_set_key| and
|RC4_options| functions which aren't getting marked as hidden. That's
because those functions aren't actually ever generated. (I'm just trying
to minimise drift with upstream here.)

In crypto/rc4/asm/rc4-x86_64.pl there's |RC4_options| which is "public"
API, except that we've never had it in the header files. So I've just
deleted it. Since we have an internal caller, we'll probably have to put
it back in the future, but it can just be done in rc4.c to save
problems.

BUG=448386

Change-Id: I3846617a0e3d73ec9e5ec3638a53364adbbc6260
Reviewed-on: https://boringssl-review.googlesource.com/3520
Reviewed-by: David Benjamin <davidben@chromium.org>
Reviewed-by: Adam Langley <agl@google.com>
2015-02-20 21:24:01 +00:00

169 lines
3.9 KiB
Raku

#!/usr/bin/env perl
$flavour = shift;
$output = shift;
if ($flavour =~ /\./) { $output = $flavour; undef $flavour; }
$win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/);
$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or
( $xlate="${dir}perlasm/x86_64-xlate.pl" and -f $xlate) or
die "can't locate x86_64-xlate.pl";
open OUT,"| \"$^X\" $xlate $flavour $output";
*STDOUT=*OUT;
($arg1,$arg2,$arg3,$arg4)=$win64?("%rcx","%rdx","%r8", "%r9") : # Win64 order
("%rdi","%rsi","%rdx","%rcx"); # Unix order
print<<___;
.text
.globl OPENSSL_ia32_cpuid
.type OPENSSL_ia32_cpuid,\@function,1
.hidden OPENSSL_ia32_cpuid
.align 16
OPENSSL_ia32_cpuid:
# On Windows, $arg1 is rcx, but that will be clobbered. So make Windows
# use the same register as Unix.
mov $arg1,%rdi
mov %rbx,%r8 # save %rbx
xor %eax,%eax
mov %eax,8(%rdi) # clear 3rd word
cpuid
mov %eax,%r11d # max value for standard query level
xor %eax,%eax
cmp \$0x756e6547,%ebx # "Genu"
setne %al
mov %eax,%r9d
cmp \$0x49656e69,%edx # "ineI"
setne %al
or %eax,%r9d
cmp \$0x6c65746e,%ecx # "ntel"
setne %al
or %eax,%r9d # 0 indicates Intel CPU
jz .Lintel
cmp \$0x68747541,%ebx # "Auth"
setne %al
mov %eax,%r10d
cmp \$0x69746E65,%edx # "enti"
setne %al
or %eax,%r10d
cmp \$0x444D4163,%ecx # "cAMD"
setne %al
or %eax,%r10d # 0 indicates AMD CPU
jnz .Lintel
# AMD specific
# See http://developer.amd.com/wordpress/media/2012/10/254811.pdf (1)
mov \$0x80000000,%eax
cpuid
# Returns "The largest CPUID extended function input value supported by
# the processor implementation." in EAX.
cmp \$0x80000001,%eax
jb .Lintel
mov %eax,%r10d
mov \$0x80000001,%eax
cpuid
# Returns feature bits in ECX. See page 20 of [1].
# TODO(fork): I think this should be a MOV.
or %ecx,%r9d
and \$0x00000801,%r9d # isolate AMD XOP bit, 1<<11
cmp \$0x80000008,%r10d
jb .Lintel
mov \$0x80000008,%eax
cpuid
# Returns APIC ID and number of cores in ECX. See page 27 of [1].
movzb %cl,%r10 # number of cores - 1
inc %r10 # number of cores
mov \$1,%eax
cpuid
# See page 13 of [1].
bt \$28,%edx # test hyper-threading bit
jnc .Lgeneric
shr \$16,%ebx # number of logical processors
cmp %r10b,%bl
ja .Lgeneric
and \$0xefffffff,%edx # Clear hyper-threading bit.
jmp .Lgeneric
.Lintel:
cmp \$4,%r11d
mov \$-1,%r10d
jb .Lnocacheinfo
mov \$4,%eax
mov \$0,%ecx # query L1D
cpuid
mov %eax,%r10d
shr \$14,%r10d
and \$0xfff,%r10d # number of cores -1 per L1D
cmp \$7,%r11d
jb .Lnocacheinfo
mov \$7,%eax
xor %ecx,%ecx
cpuid
mov %ebx,8(%rdi)
.Lnocacheinfo:
mov \$1,%eax
cpuid
# Gets feature information. See table 3-21 in the Intel manual.
and \$0xbfefffff,%edx # force reserved bits to 0
cmp \$0,%r9d
jne .Lnotintel
or \$0x40000000,%edx # set reserved bit#30 on Intel CPUs
and \$15,%ah
cmp \$15,%ah # examine Family ID
jne .Lnotintel
or \$0x00100000,%edx # set reserved bit#20 to engage RC4_CHAR
.Lnotintel:
bt \$28,%edx # test hyper-threading bit
jnc .Lgeneric
and \$0xefffffff,%edx # ~(1<<28) - clear hyper-threading.
cmp \$0,%r10d
je .Lgeneric
or \$0x10000000,%edx # 1<<28
shr \$16,%ebx
cmp \$1,%bl # see if cache is shared
ja .Lgeneric
and \$0xefffffff,%edx # ~(1<<28)
.Lgeneric:
and \$0x00000800,%r9d # isolate AMD XOP flag
and \$0xfffff7ff,%ecx
or %ecx,%r9d # merge AMD XOP flag
mov %edx,%r10d # %r9d:%r10d is copy of %ecx:%edx
bt \$27,%r9d # check OSXSAVE bit
jnc .Lclear_avx
xor %ecx,%ecx # XCR0
.byte 0x0f,0x01,0xd0 # xgetbv
and \$6,%eax # isolate XMM and YMM state support
cmp \$6,%eax
je .Ldone
.Lclear_avx:
mov \$0xefffe7ff,%eax # ~(1<<28|1<<12|1<<11)
and %eax,%r9d # clear AVX, FMA and AMD XOP bits
andl \$0xffffffdf,8(%rdi) # cleax AVX2, ~(1<<5)
.Ldone:
movl %r9d,4(%rdi)
movl %r10d,0(%rdi)
mov %r8,%rbx # restore %rbx
ret
.size OPENSSL_ia32_cpuid,.-OPENSSL_ia32_cpuid
___
close STDOUT; # flush