fdd8e9c8c7
Depending on architecture, perlasm differed on which one or both of: perl foo.pl flavor output.S perl foo.pl flavor > output.S Upstream has now unified on the first form after making a number of changes to their files (the second does not even work for their x86 files anymore). Sync those portions of our perlasm scripts with upstream and update CMakeLists.txt and generate_build_files.py per the new convention. This imports various commits like this one: 184bc45f683c76531d7e065b6553ca9086564576 (this was done by taking a diff, so I don't have the full list) Confirmed that generate_build_files.py sees no change. BUG=14 Change-Id: Id2fb5b8bc2a7369d077221b5df9a6947d41f50d2 Reviewed-on: https://boringssl-review.googlesource.com/8518 Reviewed-by: Adam Langley <agl@google.com>
2994 lines
101 KiB
Perl
Executable File
2994 lines
101 KiB
Perl
Executable File
#!/usr/bin/env perl
|
|
#
|
|
# ====================================================================
|
|
# Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
|
|
# project. The module is, however, dual licensed under OpenSSL and
|
|
# CRYPTOGAMS licenses depending on where you obtain it. For further
|
|
# details see http://www.openssl.org/~appro/cryptogams/.
|
|
# ====================================================================
|
|
#
|
|
# Version 4.3.
|
|
#
|
|
# You might fail to appreciate this module performance from the first
|
|
# try. If compared to "vanilla" linux-ia32-icc target, i.e. considered
|
|
# to be *the* best Intel C compiler without -KPIC, performance appears
|
|
# to be virtually identical... But try to re-configure with shared
|
|
# library support... Aha! Intel compiler "suddenly" lags behind by 30%
|
|
# [on P4, more on others]:-) And if compared to position-independent
|
|
# code generated by GNU C, this code performs *more* than *twice* as
|
|
# fast! Yes, all this buzz about PIC means that unlike other hand-
|
|
# coded implementations, this one was explicitly designed to be safe
|
|
# to use even in shared library context... This also means that this
|
|
# code isn't necessarily absolutely fastest "ever," because in order
|
|
# to achieve position independence an extra register has to be
|
|
# off-loaded to stack, which affects the benchmark result.
|
|
#
|
|
# Special note about instruction choice. Do you recall RC4_INT code
|
|
# performing poorly on P4? It might be the time to figure out why.
|
|
# RC4_INT code implies effective address calculations in base+offset*4
|
|
# form. Trouble is that it seems that offset scaling turned to be
|
|
# critical path... At least eliminating scaling resulted in 2.8x RC4
|
|
# performance improvement [as you might recall]. As AES code is hungry
|
|
# for scaling too, I [try to] avoid the latter by favoring off-by-2
|
|
# shifts and masking the result with 0xFF<<2 instead of "boring" 0xFF.
|
|
#
|
|
# As was shown by Dean Gaudet <dean@arctic.org>, the above note turned
|
|
# void. Performance improvement with off-by-2 shifts was observed on
|
|
# intermediate implementation, which was spilling yet another register
|
|
# to stack... Final offset*4 code below runs just a tad faster on P4,
|
|
# but exhibits up to 10% improvement on other cores.
|
|
#
|
|
# Second version is "monolithic" replacement for aes_core.c, which in
|
|
# addition to AES_[de|en]crypt implements AES_set_[de|en]cryption_key.
|
|
# This made it possible to implement little-endian variant of the
|
|
# algorithm without modifying the base C code. Motivating factor for
|
|
# the undertaken effort was that it appeared that in tight IA-32
|
|
# register window little-endian flavor could achieve slightly higher
|
|
# Instruction Level Parallelism, and it indeed resulted in up to 15%
|
|
# better performance on most recent µ-archs...
|
|
#
|
|
# Third version adds AES_cbc_encrypt implementation, which resulted in
|
|
# up to 40% performance imrovement of CBC benchmark results. 40% was
|
|
# observed on P4 core, where "overall" imrovement coefficient, i.e. if
|
|
# compared to PIC generated by GCC and in CBC mode, was observed to be
|
|
# as large as 4x:-) CBC performance is virtually identical to ECB now
|
|
# and on some platforms even better, e.g. 17.6 "small" cycles/byte on
|
|
# Opteron, because certain function prologues and epilogues are
|
|
# effectively taken out of the loop...
|
|
#
|
|
# Version 3.2 implements compressed tables and prefetch of these tables
|
|
# in CBC[!] mode. Former means that 3/4 of table references are now
|
|
# misaligned, which unfortunately has negative impact on elder IA-32
|
|
# implementations, Pentium suffered 30% penalty, PIII - 10%.
|
|
#
|
|
# Version 3.3 avoids L1 cache aliasing between stack frame and
|
|
# S-boxes, and 3.4 - L1 cache aliasing even between key schedule. The
|
|
# latter is achieved by copying the key schedule to controlled place in
|
|
# stack. This unfortunately has rather strong impact on small block CBC
|
|
# performance, ~2x deterioration on 16-byte block if compared to 3.3.
|
|
#
|
|
# Version 3.5 checks if there is L1 cache aliasing between user-supplied
|
|
# key schedule and S-boxes and abstains from copying the former if
|
|
# there is no. This allows end-user to consciously retain small block
|
|
# performance by aligning key schedule in specific manner.
|
|
#
|
|
# Version 3.6 compresses Td4 to 256 bytes and prefetches it in ECB.
|
|
#
|
|
# Current ECB performance numbers for 128-bit key in CPU cycles per
|
|
# processed byte [measure commonly used by AES benchmarkers] are:
|
|
#
|
|
# small footprint fully unrolled
|
|
# P4 24 22
|
|
# AMD K8 20 19
|
|
# PIII 25 23
|
|
# Pentium 81 78
|
|
#
|
|
# Version 3.7 reimplements outer rounds as "compact." Meaning that
|
|
# first and last rounds reference compact 256 bytes S-box. This means
|
|
# that first round consumes a lot more CPU cycles and that encrypt
|
|
# and decrypt performance becomes asymmetric. Encrypt performance
|
|
# drops by 10-12%, while decrypt - by 20-25%:-( 256 bytes S-box is
|
|
# aggressively pre-fetched.
|
|
#
|
|
# Version 4.0 effectively rolls back to 3.6 and instead implements
|
|
# additional set of functions, _[x86|sse]_AES_[en|de]crypt_compact,
|
|
# which use exclusively 256 byte S-box. These functions are to be
|
|
# called in modes not concealing plain text, such as ECB, or when
|
|
# we're asked to process smaller amount of data [or unconditionally
|
|
# on hyper-threading CPU]. Currently it's called unconditionally from
|
|
# AES_[en|de]crypt, which affects all modes, but CBC. CBC routine
|
|
# still needs to be modified to switch between slower and faster
|
|
# mode when appropriate... But in either case benchmark landscape
|
|
# changes dramatically and below numbers are CPU cycles per processed
|
|
# byte for 128-bit key.
|
|
#
|
|
# ECB encrypt ECB decrypt CBC large chunk
|
|
# P4 52[54] 83[95] 23
|
|
# AMD K8 46[41] 66[70] 18
|
|
# PIII 41[50] 60[77] 24
|
|
# Core 2 31[36] 45[64] 18.5
|
|
# Atom 76[100] 96[138] 60
|
|
# Pentium 115 150 77
|
|
#
|
|
# Version 4.1 switches to compact S-box even in key schedule setup.
|
|
#
|
|
# Version 4.2 prefetches compact S-box in every SSE round or in other
|
|
# words every cache-line is *guaranteed* to be accessed within ~50
|
|
# cycles window. Why just SSE? Because it's needed on hyper-threading
|
|
# CPU! Which is also why it's prefetched with 64 byte stride. Best
|
|
# part is that it has no negative effect on performance:-)
|
|
#
|
|
# Version 4.3 implements switch between compact and non-compact block
|
|
# functions in AES_cbc_encrypt depending on how much data was asked
|
|
# to be processed in one stroke.
|
|
#
|
|
######################################################################
|
|
# Timing attacks are classified in two classes: synchronous when
|
|
# attacker consciously initiates cryptographic operation and collects
|
|
# timing data of various character afterwards, and asynchronous when
|
|
# malicious code is executed on same CPU simultaneously with AES,
|
|
# instruments itself and performs statistical analysis of this data.
|
|
#
|
|
# As far as synchronous attacks go the root to the AES timing
|
|
# vulnerability is twofold. Firstly, of 256 S-box elements at most 160
|
|
# are referred to in single 128-bit block operation. Well, in C
|
|
# implementation with 4 distinct tables it's actually as little as 40
|
|
# references per 256 elements table, but anyway... Secondly, even
|
|
# though S-box elements are clustered into smaller amount of cache-
|
|
# lines, smaller than 160 and even 40, it turned out that for certain
|
|
# plain-text pattern[s] or simply put chosen plain-text and given key
|
|
# few cache-lines remain unaccessed during block operation. Now, if
|
|
# attacker can figure out this access pattern, he can deduct the key
|
|
# [or at least part of it]. The natural way to mitigate this kind of
|
|
# attacks is to minimize the amount of cache-lines in S-box and/or
|
|
# prefetch them to ensure that every one is accessed for more uniform
|
|
# timing. But note that *if* plain-text was concealed in such way that
|
|
# input to block function is distributed *uniformly*, then attack
|
|
# wouldn't apply. Now note that some encryption modes, most notably
|
|
# CBC, do mask the plain-text in this exact way [secure cipher output
|
|
# is distributed uniformly]. Yes, one still might find input that
|
|
# would reveal the information about given key, but if amount of
|
|
# candidate inputs to be tried is larger than amount of possible key
|
|
# combinations then attack becomes infeasible. This is why revised
|
|
# AES_cbc_encrypt "dares" to switch to larger S-box when larger chunk
|
|
# of data is to be processed in one stroke. The current size limit of
|
|
# 512 bytes is chosen to provide same [diminishigly low] probability
|
|
# for cache-line to remain untouched in large chunk operation with
|
|
# large S-box as for single block operation with compact S-box and
|
|
# surely needs more careful consideration...
|
|
#
|
|
# As for asynchronous attacks. There are two flavours: attacker code
|
|
# being interleaved with AES on hyper-threading CPU at *instruction*
|
|
# level, and two processes time sharing single core. As for latter.
|
|
# Two vectors. 1. Given that attacker process has higher priority,
|
|
# yield execution to process performing AES just before timer fires
|
|
# off the scheduler, immediately regain control of CPU and analyze the
|
|
# cache state. For this attack to be efficient attacker would have to
|
|
# effectively slow down the operation by several *orders* of magnitute,
|
|
# by ratio of time slice to duration of handful of AES rounds, which
|
|
# unlikely to remain unnoticed. Not to mention that this also means
|
|
# that he would spend correspondigly more time to collect enough
|
|
# statistical data to mount the attack. It's probably appropriate to
|
|
# say that if adeversary reckons that this attack is beneficial and
|
|
# risks to be noticed, you probably have larger problems having him
|
|
# mere opportunity. In other words suggested code design expects you
|
|
# to preclude/mitigate this attack by overall system security design.
|
|
# 2. Attacker manages to make his code interrupt driven. In order for
|
|
# this kind of attack to be feasible, interrupt rate has to be high
|
|
# enough, again comparable to duration of handful of AES rounds. But
|
|
# is there interrupt source of such rate? Hardly, not even 1Gbps NIC
|
|
# generates interrupts at such raging rate...
|
|
#
|
|
# And now back to the former, hyper-threading CPU or more specifically
|
|
# Intel P4. Recall that asynchronous attack implies that malicious
|
|
# code instruments itself. And naturally instrumentation granularity
|
|
# has be noticeably lower than duration of codepath accessing S-box.
|
|
# Given that all cache-lines are accessed during that time that is.
|
|
# Current implementation accesses *all* cache-lines within ~50 cycles
|
|
# window, which is actually *less* than RDTSC latency on Intel P4!
|
|
|
|
$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
|
|
push(@INC,"${dir}","${dir}../../perlasm");
|
|
require "x86asm.pl";
|
|
|
|
$output = pop;
|
|
open OUT,">$output";
|
|
*STDOUT=*OUT;
|
|
|
|
&asm_init($ARGV[0],"aes-586.pl",$x86only = $ARGV[$#ARGV] eq "386");
|
|
&static_label("AES_Te");
|
|
&static_label("AES_Td");
|
|
|
|
$s0="eax";
|
|
$s1="ebx";
|
|
$s2="ecx";
|
|
$s3="edx";
|
|
$key="edi";
|
|
$acc="esi";
|
|
$tbl="ebp";
|
|
|
|
# stack frame layout in _[x86|sse]_AES_* routines, frame is allocated
|
|
# by caller
|
|
$__ra=&DWP(0,"esp"); # return address
|
|
$__s0=&DWP(4,"esp"); # s0 backing store
|
|
$__s1=&DWP(8,"esp"); # s1 backing store
|
|
$__s2=&DWP(12,"esp"); # s2 backing store
|
|
$__s3=&DWP(16,"esp"); # s3 backing store
|
|
$__key=&DWP(20,"esp"); # pointer to key schedule
|
|
$__end=&DWP(24,"esp"); # pointer to end of key schedule
|
|
$__tbl=&DWP(28,"esp"); # %ebp backing store
|
|
|
|
# stack frame layout in AES_[en|crypt] routines, which differs from
|
|
# above by 4 and overlaps by %ebp backing store
|
|
$_tbl=&DWP(24,"esp");
|
|
$_esp=&DWP(28,"esp");
|
|
|
|
sub _data_word() { my $i; while(defined($i=shift)) { &data_word($i,$i); } }
|
|
|
|
$speed_limit=512; # chunks smaller than $speed_limit are
|
|
# processed with compact routine in CBC mode
|
|
$small_footprint=1; # $small_footprint=1 code is ~5% slower [on
|
|
# recent µ-archs], but ~5 times smaller!
|
|
# I favor compact code to minimize cache
|
|
# contention and in hope to "collect" 5% back
|
|
# in real-life applications...
|
|
|
|
$vertical_spin=0; # shift "verticaly" defaults to 0, because of
|
|
# its proof-of-concept status...
|
|
# Note that there is no decvert(), as well as last encryption round is
|
|
# performed with "horizontal" shifts. This is because this "vertical"
|
|
# implementation [one which groups shifts on a given $s[i] to form a
|
|
# "column," unlike "horizontal" one, which groups shifts on different
|
|
# $s[i] to form a "row"] is work in progress. It was observed to run
|
|
# few percents faster on Intel cores, but not AMD. On AMD K8 core it's
|
|
# whole 12% slower:-( So we face a trade-off... Shall it be resolved
|
|
# some day? Till then the code is considered experimental and by
|
|
# default remains dormant...
|
|
|
|
sub encvert()
|
|
{ my ($te,@s) = @_;
|
|
my ($v0,$v1) = ($acc,$key);
|
|
|
|
&mov ($v0,$s[3]); # copy s3
|
|
&mov (&DWP(4,"esp"),$s[2]); # save s2
|
|
&mov ($v1,$s[0]); # copy s0
|
|
&mov (&DWP(8,"esp"),$s[1]); # save s1
|
|
|
|
&movz ($s[2],&HB($s[0]));
|
|
&and ($s[0],0xFF);
|
|
&mov ($s[0],&DWP(0,$te,$s[0],8)); # s0>>0
|
|
&shr ($v1,16);
|
|
&mov ($s[3],&DWP(3,$te,$s[2],8)); # s0>>8
|
|
&movz ($s[1],&HB($v1));
|
|
&and ($v1,0xFF);
|
|
&mov ($s[2],&DWP(2,$te,$v1,8)); # s0>>16
|
|
&mov ($v1,$v0);
|
|
&mov ($s[1],&DWP(1,$te,$s[1],8)); # s0>>24
|
|
|
|
&and ($v0,0xFF);
|
|
&xor ($s[3],&DWP(0,$te,$v0,8)); # s3>>0
|
|
&movz ($v0,&HB($v1));
|
|
&shr ($v1,16);
|
|
&xor ($s[2],&DWP(3,$te,$v0,8)); # s3>>8
|
|
&movz ($v0,&HB($v1));
|
|
&and ($v1,0xFF);
|
|
&xor ($s[1],&DWP(2,$te,$v1,8)); # s3>>16
|
|
&mov ($v1,&DWP(4,"esp")); # restore s2
|
|
&xor ($s[0],&DWP(1,$te,$v0,8)); # s3>>24
|
|
|
|
&mov ($v0,$v1);
|
|
&and ($v1,0xFF);
|
|
&xor ($s[2],&DWP(0,$te,$v1,8)); # s2>>0
|
|
&movz ($v1,&HB($v0));
|
|
&shr ($v0,16);
|
|
&xor ($s[1],&DWP(3,$te,$v1,8)); # s2>>8
|
|
&movz ($v1,&HB($v0));
|
|
&and ($v0,0xFF);
|
|
&xor ($s[0],&DWP(2,$te,$v0,8)); # s2>>16
|
|
&mov ($v0,&DWP(8,"esp")); # restore s1
|
|
&xor ($s[3],&DWP(1,$te,$v1,8)); # s2>>24
|
|
|
|
&mov ($v1,$v0);
|
|
&and ($v0,0xFF);
|
|
&xor ($s[1],&DWP(0,$te,$v0,8)); # s1>>0
|
|
&movz ($v0,&HB($v1));
|
|
&shr ($v1,16);
|
|
&xor ($s[0],&DWP(3,$te,$v0,8)); # s1>>8
|
|
&movz ($v0,&HB($v1));
|
|
&and ($v1,0xFF);
|
|
&xor ($s[3],&DWP(2,$te,$v1,8)); # s1>>16
|
|
&mov ($key,$__key); # reincarnate v1 as key
|
|
&xor ($s[2],&DWP(1,$te,$v0,8)); # s1>>24
|
|
}
|
|
|
|
# Another experimental routine, which features "horizontal spin," but
|
|
# eliminates one reference to stack. Strangely enough runs slower...
|
|
sub enchoriz()
|
|
{ my ($v0,$v1) = ($key,$acc);
|
|
|
|
&movz ($v0,&LB($s0)); # 3, 2, 1, 0*
|
|
&rotr ($s2,8); # 8,11,10, 9
|
|
&mov ($v1,&DWP(0,$te,$v0,8)); # 0
|
|
&movz ($v0,&HB($s1)); # 7, 6, 5*, 4
|
|
&rotr ($s3,16); # 13,12,15,14
|
|
&xor ($v1,&DWP(3,$te,$v0,8)); # 5
|
|
&movz ($v0,&HB($s2)); # 8,11,10*, 9
|
|
&rotr ($s0,16); # 1, 0, 3, 2
|
|
&xor ($v1,&DWP(2,$te,$v0,8)); # 10
|
|
&movz ($v0,&HB($s3)); # 13,12,15*,14
|
|
&xor ($v1,&DWP(1,$te,$v0,8)); # 15, t[0] collected
|
|
&mov ($__s0,$v1); # t[0] saved
|
|
|
|
&movz ($v0,&LB($s1)); # 7, 6, 5, 4*
|
|
&shr ($s1,16); # -, -, 7, 6
|
|
&mov ($v1,&DWP(0,$te,$v0,8)); # 4
|
|
&movz ($v0,&LB($s3)); # 13,12,15,14*
|
|
&xor ($v1,&DWP(2,$te,$v0,8)); # 14
|
|
&movz ($v0,&HB($s0)); # 1, 0, 3*, 2
|
|
&and ($s3,0xffff0000); # 13,12, -, -
|
|
&xor ($v1,&DWP(1,$te,$v0,8)); # 3
|
|
&movz ($v0,&LB($s2)); # 8,11,10, 9*
|
|
&or ($s3,$s1); # 13,12, 7, 6
|
|
&xor ($v1,&DWP(3,$te,$v0,8)); # 9, t[1] collected
|
|
&mov ($s1,$v1); # s[1]=t[1]
|
|
|
|
&movz ($v0,&LB($s0)); # 1, 0, 3, 2*
|
|
&shr ($s2,16); # -, -, 8,11
|
|
&mov ($v1,&DWP(2,$te,$v0,8)); # 2
|
|
&movz ($v0,&HB($s3)); # 13,12, 7*, 6
|
|
&xor ($v1,&DWP(1,$te,$v0,8)); # 7
|
|
&movz ($v0,&HB($s2)); # -, -, 8*,11
|
|
&xor ($v1,&DWP(0,$te,$v0,8)); # 8
|
|
&mov ($v0,$s3);
|
|
&shr ($v0,24); # 13
|
|
&xor ($v1,&DWP(3,$te,$v0,8)); # 13, t[2] collected
|
|
|
|
&movz ($v0,&LB($s2)); # -, -, 8,11*
|
|
&shr ($s0,24); # 1*
|
|
&mov ($s2,&DWP(1,$te,$v0,8)); # 11
|
|
&xor ($s2,&DWP(3,$te,$s0,8)); # 1
|
|
&mov ($s0,$__s0); # s[0]=t[0]
|
|
&movz ($v0,&LB($s3)); # 13,12, 7, 6*
|
|
&shr ($s3,16); # , ,13,12
|
|
&xor ($s2,&DWP(2,$te,$v0,8)); # 6
|
|
&mov ($key,$__key); # reincarnate v0 as key
|
|
&and ($s3,0xff); # , ,13,12*
|
|
&mov ($s3,&DWP(0,$te,$s3,8)); # 12
|
|
&xor ($s3,$s2); # s[2]=t[3] collected
|
|
&mov ($s2,$v1); # s[2]=t[2]
|
|
}
|
|
|
|
# More experimental code... SSE one... Even though this one eliminates
|
|
# *all* references to stack, it's not faster...
|
|
sub sse_encbody()
|
|
{
|
|
&movz ($acc,&LB("eax")); # 0
|
|
&mov ("ecx",&DWP(0,$tbl,$acc,8)); # 0
|
|
&pshufw ("mm2","mm0",0x0d); # 7, 6, 3, 2
|
|
&movz ("edx",&HB("eax")); # 1
|
|
&mov ("edx",&DWP(3,$tbl,"edx",8)); # 1
|
|
&shr ("eax",16); # 5, 4
|
|
|
|
&movz ($acc,&LB("ebx")); # 10
|
|
&xor ("ecx",&DWP(2,$tbl,$acc,8)); # 10
|
|
&pshufw ("mm6","mm4",0x08); # 13,12, 9, 8
|
|
&movz ($acc,&HB("ebx")); # 11
|
|
&xor ("edx",&DWP(1,$tbl,$acc,8)); # 11
|
|
&shr ("ebx",16); # 15,14
|
|
|
|
&movz ($acc,&HB("eax")); # 5
|
|
&xor ("ecx",&DWP(3,$tbl,$acc,8)); # 5
|
|
&movq ("mm3",QWP(16,$key));
|
|
&movz ($acc,&HB("ebx")); # 15
|
|
&xor ("ecx",&DWP(1,$tbl,$acc,8)); # 15
|
|
&movd ("mm0","ecx"); # t[0] collected
|
|
|
|
&movz ($acc,&LB("eax")); # 4
|
|
&mov ("ecx",&DWP(0,$tbl,$acc,8)); # 4
|
|
&movd ("eax","mm2"); # 7, 6, 3, 2
|
|
&movz ($acc,&LB("ebx")); # 14
|
|
&xor ("ecx",&DWP(2,$tbl,$acc,8)); # 14
|
|
&movd ("ebx","mm6"); # 13,12, 9, 8
|
|
|
|
&movz ($acc,&HB("eax")); # 3
|
|
&xor ("ecx",&DWP(1,$tbl,$acc,8)); # 3
|
|
&movz ($acc,&HB("ebx")); # 9
|
|
&xor ("ecx",&DWP(3,$tbl,$acc,8)); # 9
|
|
&movd ("mm1","ecx"); # t[1] collected
|
|
|
|
&movz ($acc,&LB("eax")); # 2
|
|
&mov ("ecx",&DWP(2,$tbl,$acc,8)); # 2
|
|
&shr ("eax",16); # 7, 6
|
|
&punpckldq ("mm0","mm1"); # t[0,1] collected
|
|
&movz ($acc,&LB("ebx")); # 8
|
|
&xor ("ecx",&DWP(0,$tbl,$acc,8)); # 8
|
|
&shr ("ebx",16); # 13,12
|
|
|
|
&movz ($acc,&HB("eax")); # 7
|
|
&xor ("ecx",&DWP(1,$tbl,$acc,8)); # 7
|
|
&pxor ("mm0","mm3");
|
|
&movz ("eax",&LB("eax")); # 6
|
|
&xor ("edx",&DWP(2,$tbl,"eax",8)); # 6
|
|
&pshufw ("mm1","mm0",0x08); # 5, 4, 1, 0
|
|
&movz ($acc,&HB("ebx")); # 13
|
|
&xor ("ecx",&DWP(3,$tbl,$acc,8)); # 13
|
|
&xor ("ecx",&DWP(24,$key)); # t[2]
|
|
&movd ("mm4","ecx"); # t[2] collected
|
|
&movz ("ebx",&LB("ebx")); # 12
|
|
&xor ("edx",&DWP(0,$tbl,"ebx",8)); # 12
|
|
&shr ("ecx",16);
|
|
&movd ("eax","mm1"); # 5, 4, 1, 0
|
|
&mov ("ebx",&DWP(28,$key)); # t[3]
|
|
&xor ("ebx","edx");
|
|
&movd ("mm5","ebx"); # t[3] collected
|
|
&and ("ebx",0xffff0000);
|
|
&or ("ebx","ecx");
|
|
|
|
&punpckldq ("mm4","mm5"); # t[2,3] collected
|
|
}
|
|
|
|
######################################################################
|
|
# "Compact" block function
|
|
######################################################################
|
|
|
|
sub enccompact()
|
|
{ my $Fn = \&mov;
|
|
while ($#_>5) { pop(@_); $Fn=sub{}; }
|
|
my ($i,$te,@s)=@_;
|
|
my $tmp = $key;
|
|
my $out = $i==3?$s[0]:$acc;
|
|
|
|
# $Fn is used in first compact round and its purpose is to
|
|
# void restoration of some values from stack, so that after
|
|
# 4xenccompact with extra argument $key value is left there...
|
|
if ($i==3) { &$Fn ($key,$__key); }##%edx
|
|
else { &mov ($out,$s[0]); }
|
|
&and ($out,0xFF);
|
|
if ($i==1) { &shr ($s[0],16); }#%ebx[1]
|
|
if ($i==2) { &shr ($s[0],24); }#%ecx[2]
|
|
&movz ($out,&BP(-128,$te,$out,1));
|
|
|
|
if ($i==3) { $tmp=$s[1]; }##%eax
|
|
&movz ($tmp,&HB($s[1]));
|
|
&movz ($tmp,&BP(-128,$te,$tmp,1));
|
|
&shl ($tmp,8);
|
|
&xor ($out,$tmp);
|
|
|
|
if ($i==3) { $tmp=$s[2]; &mov ($s[1],$__s0); }##%ebx
|
|
else { &mov ($tmp,$s[2]);
|
|
&shr ($tmp,16); }
|
|
if ($i==2) { &and ($s[1],0xFF); }#%edx[2]
|
|
&and ($tmp,0xFF);
|
|
&movz ($tmp,&BP(-128,$te,$tmp,1));
|
|
&shl ($tmp,16);
|
|
&xor ($out,$tmp);
|
|
|
|
if ($i==3) { $tmp=$s[3]; &mov ($s[2],$__s1); }##%ecx
|
|
elsif($i==2){ &movz ($tmp,&HB($s[3])); }#%ebx[2]
|
|
else { &mov ($tmp,$s[3]);
|
|
&shr ($tmp,24); }
|
|
&movz ($tmp,&BP(-128,$te,$tmp,1));
|
|
&shl ($tmp,24);
|
|
&xor ($out,$tmp);
|
|
if ($i<2) { &mov (&DWP(4+4*$i,"esp"),$out); }
|
|
if ($i==3) { &mov ($s[3],$acc); }
|
|
&comment();
|
|
}
|
|
|
|
sub enctransform()
|
|
{ my @s = ($s0,$s1,$s2,$s3);
|
|
my $i = shift;
|
|
my $tmp = $tbl;
|
|
my $r2 = $key ;
|
|
|
|
&and ($tmp,$s[$i]);
|
|
&lea ($r2,&DWP(0,$s[$i],$s[$i]));
|
|
&mov ($acc,$tmp);
|
|
&shr ($tmp,7);
|
|
&and ($r2,0xfefefefe);
|
|
&sub ($acc,$tmp);
|
|
&mov ($tmp,$s[$i]);
|
|
&and ($acc,0x1b1b1b1b);
|
|
&rotr ($tmp,16);
|
|
&xor ($acc,$r2); # r2
|
|
&mov ($r2,$s[$i]);
|
|
|
|
&xor ($s[$i],$acc); # r0 ^ r2
|
|
&rotr ($r2,16+8);
|
|
&xor ($acc,$tmp);
|
|
&rotl ($s[$i],24);
|
|
&xor ($acc,$r2);
|
|
&mov ($tmp,0x80808080) if ($i!=1);
|
|
&xor ($s[$i],$acc); # ROTATE(r2^r0,24) ^ r2
|
|
}
|
|
|
|
&function_begin_B("_x86_AES_encrypt_compact");
|
|
# note that caller is expected to allocate stack frame for me!
|
|
&mov ($__key,$key); # save key
|
|
|
|
&xor ($s0,&DWP(0,$key)); # xor with key
|
|
&xor ($s1,&DWP(4,$key));
|
|
&xor ($s2,&DWP(8,$key));
|
|
&xor ($s3,&DWP(12,$key));
|
|
|
|
&mov ($acc,&DWP(240,$key)); # load key->rounds
|
|
&lea ($acc,&DWP(-2,$acc,$acc));
|
|
&lea ($acc,&DWP(0,$key,$acc,8));
|
|
&mov ($__end,$acc); # end of key schedule
|
|
|
|
# prefetch Te4
|
|
&mov ($key,&DWP(0-128,$tbl));
|
|
&mov ($acc,&DWP(32-128,$tbl));
|
|
&mov ($key,&DWP(64-128,$tbl));
|
|
&mov ($acc,&DWP(96-128,$tbl));
|
|
&mov ($key,&DWP(128-128,$tbl));
|
|
&mov ($acc,&DWP(160-128,$tbl));
|
|
&mov ($key,&DWP(192-128,$tbl));
|
|
&mov ($acc,&DWP(224-128,$tbl));
|
|
|
|
&set_label("loop",16);
|
|
|
|
&enccompact(0,$tbl,$s0,$s1,$s2,$s3,1);
|
|
&enccompact(1,$tbl,$s1,$s2,$s3,$s0,1);
|
|
&enccompact(2,$tbl,$s2,$s3,$s0,$s1,1);
|
|
&enccompact(3,$tbl,$s3,$s0,$s1,$s2,1);
|
|
&mov ($tbl,0x80808080);
|
|
&enctransform(2);
|
|
&enctransform(3);
|
|
&enctransform(0);
|
|
&enctransform(1);
|
|
&mov ($key,$__key);
|
|
&mov ($tbl,$__tbl);
|
|
&add ($key,16); # advance rd_key
|
|
&xor ($s0,&DWP(0,$key));
|
|
&xor ($s1,&DWP(4,$key));
|
|
&xor ($s2,&DWP(8,$key));
|
|
&xor ($s3,&DWP(12,$key));
|
|
|
|
&cmp ($key,$__end);
|
|
&mov ($__key,$key);
|
|
&jb (&label("loop"));
|
|
|
|
&enccompact(0,$tbl,$s0,$s1,$s2,$s3);
|
|
&enccompact(1,$tbl,$s1,$s2,$s3,$s0);
|
|
&enccompact(2,$tbl,$s2,$s3,$s0,$s1);
|
|
&enccompact(3,$tbl,$s3,$s0,$s1,$s2);
|
|
|
|
&xor ($s0,&DWP(16,$key));
|
|
&xor ($s1,&DWP(20,$key));
|
|
&xor ($s2,&DWP(24,$key));
|
|
&xor ($s3,&DWP(28,$key));
|
|
|
|
&ret ();
|
|
&function_end_B("_x86_AES_encrypt_compact");
|
|
|
|
######################################################################
|
|
# "Compact" SSE block function.
|
|
######################################################################
|
|
#
|
|
# Performance is not actually extraordinary in comparison to pure
|
|
# x86 code. In particular encrypt performance is virtually the same.
|
|
# Decrypt performance on the other hand is 15-20% better on newer
|
|
# µ-archs [but we're thankful for *any* improvement here], and ~50%
|
|
# better on PIII:-) And additionally on the pros side this code
|
|
# eliminates redundant references to stack and thus relieves/
|
|
# minimizes the pressure on the memory bus.
|
|
#
|
|
# MMX register layout lsb
|
|
# +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
|
|
# | mm4 | mm0 |
|
|
# +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
|
|
# | s3 | s2 | s1 | s0 |
|
|
# +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
|
|
# |15|14|13|12|11|10| 9| 8| 7| 6| 5| 4| 3| 2| 1| 0|
|
|
# +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
|
|
#
|
|
# Indexes translate as s[N/4]>>(8*(N%4)), e.g. 5 means s1>>8.
|
|
# In this terms encryption and decryption "compact" permutation
|
|
# matrices can be depicted as following:
|
|
#
|
|
# encryption lsb # decryption lsb
|
|
# +----++----+----+----+----+ # +----++----+----+----+----+
|
|
# | t0 || 15 | 10 | 5 | 0 | # | t0 || 7 | 10 | 13 | 0 |
|
|
# +----++----+----+----+----+ # +----++----+----+----+----+
|
|
# | t1 || 3 | 14 | 9 | 4 | # | t1 || 11 | 14 | 1 | 4 |
|
|
# +----++----+----+----+----+ # +----++----+----+----+----+
|
|
# | t2 || 7 | 2 | 13 | 8 | # | t2 || 15 | 2 | 5 | 8 |
|
|
# +----++----+----+----+----+ # +----++----+----+----+----+
|
|
# | t3 || 11 | 6 | 1 | 12 | # | t3 || 3 | 6 | 9 | 12 |
|
|
# +----++----+----+----+----+ # +----++----+----+----+----+
|
|
#
|
|
######################################################################
|
|
# Why not xmm registers? Short answer. It was actually tested and
|
|
# was not any faster, but *contrary*, most notably on Intel CPUs.
|
|
# Longer answer. Main advantage of using mm registers is that movd
|
|
# latency is lower, especially on Intel P4. While arithmetic
|
|
# instructions are twice as many, they can be scheduled every cycle
|
|
# and not every second one when they are operating on xmm register,
|
|
# so that "arithmetic throughput" remains virtually the same. And
|
|
# finally the code can be executed even on elder SSE-only CPUs:-)
|
|
|
|
sub sse_enccompact()
|
|
{
|
|
&pshufw ("mm1","mm0",0x08); # 5, 4, 1, 0
|
|
&pshufw ("mm5","mm4",0x0d); # 15,14,11,10
|
|
&movd ("eax","mm1"); # 5, 4, 1, 0
|
|
&movd ("ebx","mm5"); # 15,14,11,10
|
|
&mov ($__key,$key);
|
|
|
|
&movz ($acc,&LB("eax")); # 0
|
|
&movz ("edx",&HB("eax")); # 1
|
|
&pshufw ("mm2","mm0",0x0d); # 7, 6, 3, 2
|
|
&movz ("ecx",&BP(-128,$tbl,$acc,1)); # 0
|
|
&movz ($key,&LB("ebx")); # 10
|
|
&movz ("edx",&BP(-128,$tbl,"edx",1)); # 1
|
|
&shr ("eax",16); # 5, 4
|
|
&shl ("edx",8); # 1
|
|
|
|
&movz ($acc,&BP(-128,$tbl,$key,1)); # 10
|
|
&movz ($key,&HB("ebx")); # 11
|
|
&shl ($acc,16); # 10
|
|
&pshufw ("mm6","mm4",0x08); # 13,12, 9, 8
|
|
&or ("ecx",$acc); # 10
|
|
&movz ($acc,&BP(-128,$tbl,$key,1)); # 11
|
|
&movz ($key,&HB("eax")); # 5
|
|
&shl ($acc,24); # 11
|
|
&shr ("ebx",16); # 15,14
|
|
&or ("edx",$acc); # 11
|
|
|
|
&movz ($acc,&BP(-128,$tbl,$key,1)); # 5
|
|
&movz ($key,&HB("ebx")); # 15
|
|
&shl ($acc,8); # 5
|
|
&or ("ecx",$acc); # 5
|
|
&movz ($acc,&BP(-128,$tbl,$key,1)); # 15
|
|
&movz ($key,&LB("eax")); # 4
|
|
&shl ($acc,24); # 15
|
|
&or ("ecx",$acc); # 15
|
|
|
|
&movz ($acc,&BP(-128,$tbl,$key,1)); # 4
|
|
&movz ($key,&LB("ebx")); # 14
|
|
&movd ("eax","mm2"); # 7, 6, 3, 2
|
|
&movd ("mm0","ecx"); # t[0] collected
|
|
&movz ("ecx",&BP(-128,$tbl,$key,1)); # 14
|
|
&movz ($key,&HB("eax")); # 3
|
|
&shl ("ecx",16); # 14
|
|
&movd ("ebx","mm6"); # 13,12, 9, 8
|
|
&or ("ecx",$acc); # 14
|
|
|
|
&movz ($acc,&BP(-128,$tbl,$key,1)); # 3
|
|
&movz ($key,&HB("ebx")); # 9
|
|
&shl ($acc,24); # 3
|
|
&or ("ecx",$acc); # 3
|
|
&movz ($acc,&BP(-128,$tbl,$key,1)); # 9
|
|
&movz ($key,&LB("ebx")); # 8
|
|
&shl ($acc,8); # 9
|
|
&shr ("ebx",16); # 13,12
|
|
&or ("ecx",$acc); # 9
|
|
|
|
&movz ($acc,&BP(-128,$tbl,$key,1)); # 8
|
|
&movz ($key,&LB("eax")); # 2
|
|
&shr ("eax",16); # 7, 6
|
|
&movd ("mm1","ecx"); # t[1] collected
|
|
&movz ("ecx",&BP(-128,$tbl,$key,1)); # 2
|
|
&movz ($key,&HB("eax")); # 7
|
|
&shl ("ecx",16); # 2
|
|
&and ("eax",0xff); # 6
|
|
&or ("ecx",$acc); # 2
|
|
|
|
&punpckldq ("mm0","mm1"); # t[0,1] collected
|
|
|
|
&movz ($acc,&BP(-128,$tbl,$key,1)); # 7
|
|
&movz ($key,&HB("ebx")); # 13
|
|
&shl ($acc,24); # 7
|
|
&and ("ebx",0xff); # 12
|
|
&movz ("eax",&BP(-128,$tbl,"eax",1)); # 6
|
|
&or ("ecx",$acc); # 7
|
|
&shl ("eax",16); # 6
|
|
&movz ($acc,&BP(-128,$tbl,$key,1)); # 13
|
|
&or ("edx","eax"); # 6
|
|
&shl ($acc,8); # 13
|
|
&movz ("ebx",&BP(-128,$tbl,"ebx",1)); # 12
|
|
&or ("ecx",$acc); # 13
|
|
&or ("edx","ebx"); # 12
|
|
&mov ($key,$__key);
|
|
&movd ("mm4","ecx"); # t[2] collected
|
|
&movd ("mm5","edx"); # t[3] collected
|
|
|
|
&punpckldq ("mm4","mm5"); # t[2,3] collected
|
|
}
|
|
|
|
if (!$x86only) {
|
|
&function_begin_B("_sse_AES_encrypt_compact");
|
|
&pxor ("mm0",&QWP(0,$key)); # 7, 6, 5, 4, 3, 2, 1, 0
|
|
&pxor ("mm4",&QWP(8,$key)); # 15,14,13,12,11,10, 9, 8
|
|
|
|
# note that caller is expected to allocate stack frame for me!
|
|
&mov ($acc,&DWP(240,$key)); # load key->rounds
|
|
&lea ($acc,&DWP(-2,$acc,$acc));
|
|
&lea ($acc,&DWP(0,$key,$acc,8));
|
|
&mov ($__end,$acc); # end of key schedule
|
|
|
|
&mov ($s0,0x1b1b1b1b); # magic constant
|
|
&mov (&DWP(8,"esp"),$s0);
|
|
&mov (&DWP(12,"esp"),$s0);
|
|
|
|
# prefetch Te4
|
|
&mov ($s0,&DWP(0-128,$tbl));
|
|
&mov ($s1,&DWP(32-128,$tbl));
|
|
&mov ($s2,&DWP(64-128,$tbl));
|
|
&mov ($s3,&DWP(96-128,$tbl));
|
|
&mov ($s0,&DWP(128-128,$tbl));
|
|
&mov ($s1,&DWP(160-128,$tbl));
|
|
&mov ($s2,&DWP(192-128,$tbl));
|
|
&mov ($s3,&DWP(224-128,$tbl));
|
|
|
|
&set_label("loop",16);
|
|
&sse_enccompact();
|
|
&add ($key,16);
|
|
&cmp ($key,$__end);
|
|
&ja (&label("out"));
|
|
|
|
&movq ("mm2",&QWP(8,"esp"));
|
|
&pxor ("mm3","mm3"); &pxor ("mm7","mm7");
|
|
&movq ("mm1","mm0"); &movq ("mm5","mm4"); # r0
|
|
&pcmpgtb("mm3","mm0"); &pcmpgtb("mm7","mm4");
|
|
&pand ("mm3","mm2"); &pand ("mm7","mm2");
|
|
&pshufw ("mm2","mm0",0xb1); &pshufw ("mm6","mm4",0xb1);# ROTATE(r0,16)
|
|
&paddb ("mm0","mm0"); &paddb ("mm4","mm4");
|
|
&pxor ("mm0","mm3"); &pxor ("mm4","mm7"); # = r2
|
|
&pshufw ("mm3","mm2",0xb1); &pshufw ("mm7","mm6",0xb1);# r0
|
|
&pxor ("mm1","mm0"); &pxor ("mm5","mm4"); # r0^r2
|
|
&pxor ("mm0","mm2"); &pxor ("mm4","mm6"); # ^= ROTATE(r0,16)
|
|
|
|
&movq ("mm2","mm3"); &movq ("mm6","mm7");
|
|
&pslld ("mm3",8); &pslld ("mm7",8);
|
|
&psrld ("mm2",24); &psrld ("mm6",24);
|
|
&pxor ("mm0","mm3"); &pxor ("mm4","mm7"); # ^= r0<<8
|
|
&pxor ("mm0","mm2"); &pxor ("mm4","mm6"); # ^= r0>>24
|
|
|
|
&movq ("mm3","mm1"); &movq ("mm7","mm5");
|
|
&movq ("mm2",&QWP(0,$key)); &movq ("mm6",&QWP(8,$key));
|
|
&psrld ("mm1",8); &psrld ("mm5",8);
|
|
&mov ($s0,&DWP(0-128,$tbl));
|
|
&pslld ("mm3",24); &pslld ("mm7",24);
|
|
&mov ($s1,&DWP(64-128,$tbl));
|
|
&pxor ("mm0","mm1"); &pxor ("mm4","mm5"); # ^= (r2^r0)<<8
|
|
&mov ($s2,&DWP(128-128,$tbl));
|
|
&pxor ("mm0","mm3"); &pxor ("mm4","mm7"); # ^= (r2^r0)>>24
|
|
&mov ($s3,&DWP(192-128,$tbl));
|
|
|
|
&pxor ("mm0","mm2"); &pxor ("mm4","mm6");
|
|
&jmp (&label("loop"));
|
|
|
|
&set_label("out",16);
|
|
&pxor ("mm0",&QWP(0,$key));
|
|
&pxor ("mm4",&QWP(8,$key));
|
|
|
|
&ret ();
|
|
&function_end_B("_sse_AES_encrypt_compact");
|
|
}
|
|
|
|
######################################################################
|
|
# Vanilla block function.
|
|
######################################################################
|
|
|
|
sub encstep()
|
|
{ my ($i,$te,@s) = @_;
|
|
my $tmp = $key;
|
|
my $out = $i==3?$s[0]:$acc;
|
|
|
|
# lines marked with #%e?x[i] denote "reordered" instructions...
|
|
if ($i==3) { &mov ($key,$__key); }##%edx
|
|
else { &mov ($out,$s[0]);
|
|
&and ($out,0xFF); }
|
|
if ($i==1) { &shr ($s[0],16); }#%ebx[1]
|
|
if ($i==2) { &shr ($s[0],24); }#%ecx[2]
|
|
&mov ($out,&DWP(0,$te,$out,8));
|
|
|
|
if ($i==3) { $tmp=$s[1]; }##%eax
|
|
&movz ($tmp,&HB($s[1]));
|
|
&xor ($out,&DWP(3,$te,$tmp,8));
|
|
|
|
if ($i==3) { $tmp=$s[2]; &mov ($s[1],$__s0); }##%ebx
|
|
else { &mov ($tmp,$s[2]);
|
|
&shr ($tmp,16); }
|
|
if ($i==2) { &and ($s[1],0xFF); }#%edx[2]
|
|
&and ($tmp,0xFF);
|
|
&xor ($out,&DWP(2,$te,$tmp,8));
|
|
|
|
if ($i==3) { $tmp=$s[3]; &mov ($s[2],$__s1); }##%ecx
|
|
elsif($i==2){ &movz ($tmp,&HB($s[3])); }#%ebx[2]
|
|
else { &mov ($tmp,$s[3]);
|
|
&shr ($tmp,24) }
|
|
&xor ($out,&DWP(1,$te,$tmp,8));
|
|
if ($i<2) { &mov (&DWP(4+4*$i,"esp"),$out); }
|
|
if ($i==3) { &mov ($s[3],$acc); }
|
|
&comment();
|
|
}
|
|
|
|
sub enclast()
|
|
{ my ($i,$te,@s)=@_;
|
|
my $tmp = $key;
|
|
my $out = $i==3?$s[0]:$acc;
|
|
|
|
if ($i==3) { &mov ($key,$__key); }##%edx
|
|
else { &mov ($out,$s[0]); }
|
|
&and ($out,0xFF);
|
|
if ($i==1) { &shr ($s[0],16); }#%ebx[1]
|
|
if ($i==2) { &shr ($s[0],24); }#%ecx[2]
|
|
&mov ($out,&DWP(2,$te,$out,8));
|
|
&and ($out,0x000000ff);
|
|
|
|
if ($i==3) { $tmp=$s[1]; }##%eax
|
|
&movz ($tmp,&HB($s[1]));
|
|
&mov ($tmp,&DWP(0,$te,$tmp,8));
|
|
&and ($tmp,0x0000ff00);
|
|
&xor ($out,$tmp);
|
|
|
|
if ($i==3) { $tmp=$s[2]; &mov ($s[1],$__s0); }##%ebx
|
|
else { &mov ($tmp,$s[2]);
|
|
&shr ($tmp,16); }
|
|
if ($i==2) { &and ($s[1],0xFF); }#%edx[2]
|
|
&and ($tmp,0xFF);
|
|
&mov ($tmp,&DWP(0,$te,$tmp,8));
|
|
&and ($tmp,0x00ff0000);
|
|
&xor ($out,$tmp);
|
|
|
|
if ($i==3) { $tmp=$s[3]; &mov ($s[2],$__s1); }##%ecx
|
|
elsif($i==2){ &movz ($tmp,&HB($s[3])); }#%ebx[2]
|
|
else { &mov ($tmp,$s[3]);
|
|
&shr ($tmp,24); }
|
|
&mov ($tmp,&DWP(2,$te,$tmp,8));
|
|
&and ($tmp,0xff000000);
|
|
&xor ($out,$tmp);
|
|
if ($i<2) { &mov (&DWP(4+4*$i,"esp"),$out); }
|
|
if ($i==3) { &mov ($s[3],$acc); }
|
|
}
|
|
|
|
&function_begin_B("_x86_AES_encrypt");
|
|
if ($vertical_spin) {
|
|
# I need high parts of volatile registers to be accessible...
|
|
&exch ($s1="edi",$key="ebx");
|
|
&mov ($s2="esi",$acc="ecx");
|
|
}
|
|
|
|
# note that caller is expected to allocate stack frame for me!
|
|
&mov ($__key,$key); # save key
|
|
|
|
&xor ($s0,&DWP(0,$key)); # xor with key
|
|
&xor ($s1,&DWP(4,$key));
|
|
&xor ($s2,&DWP(8,$key));
|
|
&xor ($s3,&DWP(12,$key));
|
|
|
|
&mov ($acc,&DWP(240,$key)); # load key->rounds
|
|
|
|
if ($small_footprint) {
|
|
&lea ($acc,&DWP(-2,$acc,$acc));
|
|
&lea ($acc,&DWP(0,$key,$acc,8));
|
|
&mov ($__end,$acc); # end of key schedule
|
|
|
|
&set_label("loop",16);
|
|
if ($vertical_spin) {
|
|
&encvert($tbl,$s0,$s1,$s2,$s3);
|
|
} else {
|
|
&encstep(0,$tbl,$s0,$s1,$s2,$s3);
|
|
&encstep(1,$tbl,$s1,$s2,$s3,$s0);
|
|
&encstep(2,$tbl,$s2,$s3,$s0,$s1);
|
|
&encstep(3,$tbl,$s3,$s0,$s1,$s2);
|
|
}
|
|
&add ($key,16); # advance rd_key
|
|
&xor ($s0,&DWP(0,$key));
|
|
&xor ($s1,&DWP(4,$key));
|
|
&xor ($s2,&DWP(8,$key));
|
|
&xor ($s3,&DWP(12,$key));
|
|
&cmp ($key,$__end);
|
|
&mov ($__key,$key);
|
|
&jb (&label("loop"));
|
|
}
|
|
else {
|
|
&cmp ($acc,10);
|
|
&jle (&label("10rounds"));
|
|
&cmp ($acc,12);
|
|
&jle (&label("12rounds"));
|
|
|
|
&set_label("14rounds",4);
|
|
for ($i=1;$i<3;$i++) {
|
|
if ($vertical_spin) {
|
|
&encvert($tbl,$s0,$s1,$s2,$s3);
|
|
} else {
|
|
&encstep(0,$tbl,$s0,$s1,$s2,$s3);
|
|
&encstep(1,$tbl,$s1,$s2,$s3,$s0);
|
|
&encstep(2,$tbl,$s2,$s3,$s0,$s1);
|
|
&encstep(3,$tbl,$s3,$s0,$s1,$s2);
|
|
}
|
|
&xor ($s0,&DWP(16*$i+0,$key));
|
|
&xor ($s1,&DWP(16*$i+4,$key));
|
|
&xor ($s2,&DWP(16*$i+8,$key));
|
|
&xor ($s3,&DWP(16*$i+12,$key));
|
|
}
|
|
&add ($key,32);
|
|
&mov ($__key,$key); # advance rd_key
|
|
&set_label("12rounds",4);
|
|
for ($i=1;$i<3;$i++) {
|
|
if ($vertical_spin) {
|
|
&encvert($tbl,$s0,$s1,$s2,$s3);
|
|
} else {
|
|
&encstep(0,$tbl,$s0,$s1,$s2,$s3);
|
|
&encstep(1,$tbl,$s1,$s2,$s3,$s0);
|
|
&encstep(2,$tbl,$s2,$s3,$s0,$s1);
|
|
&encstep(3,$tbl,$s3,$s0,$s1,$s2);
|
|
}
|
|
&xor ($s0,&DWP(16*$i+0,$key));
|
|
&xor ($s1,&DWP(16*$i+4,$key));
|
|
&xor ($s2,&DWP(16*$i+8,$key));
|
|
&xor ($s3,&DWP(16*$i+12,$key));
|
|
}
|
|
&add ($key,32);
|
|
&mov ($__key,$key); # advance rd_key
|
|
&set_label("10rounds",4);
|
|
for ($i=1;$i<10;$i++) {
|
|
if ($vertical_spin) {
|
|
&encvert($tbl,$s0,$s1,$s2,$s3);
|
|
} else {
|
|
&encstep(0,$tbl,$s0,$s1,$s2,$s3);
|
|
&encstep(1,$tbl,$s1,$s2,$s3,$s0);
|
|
&encstep(2,$tbl,$s2,$s3,$s0,$s1);
|
|
&encstep(3,$tbl,$s3,$s0,$s1,$s2);
|
|
}
|
|
&xor ($s0,&DWP(16*$i+0,$key));
|
|
&xor ($s1,&DWP(16*$i+4,$key));
|
|
&xor ($s2,&DWP(16*$i+8,$key));
|
|
&xor ($s3,&DWP(16*$i+12,$key));
|
|
}
|
|
}
|
|
|
|
if ($vertical_spin) {
|
|
# "reincarnate" some registers for "horizontal" spin...
|
|
&mov ($s1="ebx",$key="edi");
|
|
&mov ($s2="ecx",$acc="esi");
|
|
}
|
|
&enclast(0,$tbl,$s0,$s1,$s2,$s3);
|
|
&enclast(1,$tbl,$s1,$s2,$s3,$s0);
|
|
&enclast(2,$tbl,$s2,$s3,$s0,$s1);
|
|
&enclast(3,$tbl,$s3,$s0,$s1,$s2);
|
|
|
|
&add ($key,$small_footprint?16:160);
|
|
&xor ($s0,&DWP(0,$key));
|
|
&xor ($s1,&DWP(4,$key));
|
|
&xor ($s2,&DWP(8,$key));
|
|
&xor ($s3,&DWP(12,$key));
|
|
|
|
&ret ();
|
|
|
|
&set_label("AES_Te",64); # Yes! I keep it in the code segment!
|
|
&_data_word(0xa56363c6, 0x847c7cf8, 0x997777ee, 0x8d7b7bf6);
|
|
&_data_word(0x0df2f2ff, 0xbd6b6bd6, 0xb16f6fde, 0x54c5c591);
|
|
&_data_word(0x50303060, 0x03010102, 0xa96767ce, 0x7d2b2b56);
|
|
&_data_word(0x19fefee7, 0x62d7d7b5, 0xe6abab4d, 0x9a7676ec);
|
|
&_data_word(0x45caca8f, 0x9d82821f, 0x40c9c989, 0x877d7dfa);
|
|
&_data_word(0x15fafaef, 0xeb5959b2, 0xc947478e, 0x0bf0f0fb);
|
|
&_data_word(0xecadad41, 0x67d4d4b3, 0xfda2a25f, 0xeaafaf45);
|
|
&_data_word(0xbf9c9c23, 0xf7a4a453, 0x967272e4, 0x5bc0c09b);
|
|
&_data_word(0xc2b7b775, 0x1cfdfde1, 0xae93933d, 0x6a26264c);
|
|
&_data_word(0x5a36366c, 0x413f3f7e, 0x02f7f7f5, 0x4fcccc83);
|
|
&_data_word(0x5c343468, 0xf4a5a551, 0x34e5e5d1, 0x08f1f1f9);
|
|
&_data_word(0x937171e2, 0x73d8d8ab, 0x53313162, 0x3f15152a);
|
|
&_data_word(0x0c040408, 0x52c7c795, 0x65232346, 0x5ec3c39d);
|
|
&_data_word(0x28181830, 0xa1969637, 0x0f05050a, 0xb59a9a2f);
|
|
&_data_word(0x0907070e, 0x36121224, 0x9b80801b, 0x3de2e2df);
|
|
&_data_word(0x26ebebcd, 0x6927274e, 0xcdb2b27f, 0x9f7575ea);
|
|
&_data_word(0x1b090912, 0x9e83831d, 0x742c2c58, 0x2e1a1a34);
|
|
&_data_word(0x2d1b1b36, 0xb26e6edc, 0xee5a5ab4, 0xfba0a05b);
|
|
&_data_word(0xf65252a4, 0x4d3b3b76, 0x61d6d6b7, 0xceb3b37d);
|
|
&_data_word(0x7b292952, 0x3ee3e3dd, 0x712f2f5e, 0x97848413);
|
|
&_data_word(0xf55353a6, 0x68d1d1b9, 0x00000000, 0x2cededc1);
|
|
&_data_word(0x60202040, 0x1ffcfce3, 0xc8b1b179, 0xed5b5bb6);
|
|
&_data_word(0xbe6a6ad4, 0x46cbcb8d, 0xd9bebe67, 0x4b393972);
|
|
&_data_word(0xde4a4a94, 0xd44c4c98, 0xe85858b0, 0x4acfcf85);
|
|
&_data_word(0x6bd0d0bb, 0x2aefefc5, 0xe5aaaa4f, 0x16fbfbed);
|
|
&_data_word(0xc5434386, 0xd74d4d9a, 0x55333366, 0x94858511);
|
|
&_data_word(0xcf45458a, 0x10f9f9e9, 0x06020204, 0x817f7ffe);
|
|
&_data_word(0xf05050a0, 0x443c3c78, 0xba9f9f25, 0xe3a8a84b);
|
|
&_data_word(0xf35151a2, 0xfea3a35d, 0xc0404080, 0x8a8f8f05);
|
|
&_data_word(0xad92923f, 0xbc9d9d21, 0x48383870, 0x04f5f5f1);
|
|
&_data_word(0xdfbcbc63, 0xc1b6b677, 0x75dadaaf, 0x63212142);
|
|
&_data_word(0x30101020, 0x1affffe5, 0x0ef3f3fd, 0x6dd2d2bf);
|
|
&_data_word(0x4ccdcd81, 0x140c0c18, 0x35131326, 0x2fececc3);
|
|
&_data_word(0xe15f5fbe, 0xa2979735, 0xcc444488, 0x3917172e);
|
|
&_data_word(0x57c4c493, 0xf2a7a755, 0x827e7efc, 0x473d3d7a);
|
|
&_data_word(0xac6464c8, 0xe75d5dba, 0x2b191932, 0x957373e6);
|
|
&_data_word(0xa06060c0, 0x98818119, 0xd14f4f9e, 0x7fdcdca3);
|
|
&_data_word(0x66222244, 0x7e2a2a54, 0xab90903b, 0x8388880b);
|
|
&_data_word(0xca46468c, 0x29eeeec7, 0xd3b8b86b, 0x3c141428);
|
|
&_data_word(0x79dedea7, 0xe25e5ebc, 0x1d0b0b16, 0x76dbdbad);
|
|
&_data_word(0x3be0e0db, 0x56323264, 0x4e3a3a74, 0x1e0a0a14);
|
|
&_data_word(0xdb494992, 0x0a06060c, 0x6c242448, 0xe45c5cb8);
|
|
&_data_word(0x5dc2c29f, 0x6ed3d3bd, 0xefacac43, 0xa66262c4);
|
|
&_data_word(0xa8919139, 0xa4959531, 0x37e4e4d3, 0x8b7979f2);
|
|
&_data_word(0x32e7e7d5, 0x43c8c88b, 0x5937376e, 0xb76d6dda);
|
|
&_data_word(0x8c8d8d01, 0x64d5d5b1, 0xd24e4e9c, 0xe0a9a949);
|
|
&_data_word(0xb46c6cd8, 0xfa5656ac, 0x07f4f4f3, 0x25eaeacf);
|
|
&_data_word(0xaf6565ca, 0x8e7a7af4, 0xe9aeae47, 0x18080810);
|
|
&_data_word(0xd5baba6f, 0x887878f0, 0x6f25254a, 0x722e2e5c);
|
|
&_data_word(0x241c1c38, 0xf1a6a657, 0xc7b4b473, 0x51c6c697);
|
|
&_data_word(0x23e8e8cb, 0x7cdddda1, 0x9c7474e8, 0x211f1f3e);
|
|
&_data_word(0xdd4b4b96, 0xdcbdbd61, 0x868b8b0d, 0x858a8a0f);
|
|
&_data_word(0x907070e0, 0x423e3e7c, 0xc4b5b571, 0xaa6666cc);
|
|
&_data_word(0xd8484890, 0x05030306, 0x01f6f6f7, 0x120e0e1c);
|
|
&_data_word(0xa36161c2, 0x5f35356a, 0xf95757ae, 0xd0b9b969);
|
|
&_data_word(0x91868617, 0x58c1c199, 0x271d1d3a, 0xb99e9e27);
|
|
&_data_word(0x38e1e1d9, 0x13f8f8eb, 0xb398982b, 0x33111122);
|
|
&_data_word(0xbb6969d2, 0x70d9d9a9, 0x898e8e07, 0xa7949433);
|
|
&_data_word(0xb69b9b2d, 0x221e1e3c, 0x92878715, 0x20e9e9c9);
|
|
&_data_word(0x49cece87, 0xff5555aa, 0x78282850, 0x7adfdfa5);
|
|
&_data_word(0x8f8c8c03, 0xf8a1a159, 0x80898909, 0x170d0d1a);
|
|
&_data_word(0xdabfbf65, 0x31e6e6d7, 0xc6424284, 0xb86868d0);
|
|
&_data_word(0xc3414182, 0xb0999929, 0x772d2d5a, 0x110f0f1e);
|
|
&_data_word(0xcbb0b07b, 0xfc5454a8, 0xd6bbbb6d, 0x3a16162c);
|
|
|
|
#Te4 # four copies of Te4 to choose from to avoid L1 aliasing
|
|
&data_byte(0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5);
|
|
&data_byte(0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76);
|
|
&data_byte(0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0);
|
|
&data_byte(0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0);
|
|
&data_byte(0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc);
|
|
&data_byte(0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15);
|
|
&data_byte(0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a);
|
|
&data_byte(0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75);
|
|
&data_byte(0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0);
|
|
&data_byte(0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84);
|
|
&data_byte(0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b);
|
|
&data_byte(0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf);
|
|
&data_byte(0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85);
|
|
&data_byte(0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8);
|
|
&data_byte(0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5);
|
|
&data_byte(0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2);
|
|
&data_byte(0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17);
|
|
&data_byte(0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73);
|
|
&data_byte(0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88);
|
|
&data_byte(0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb);
|
|
&data_byte(0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c);
|
|
&data_byte(0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79);
|
|
&data_byte(0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9);
|
|
&data_byte(0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08);
|
|
&data_byte(0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6);
|
|
&data_byte(0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a);
|
|
&data_byte(0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e);
|
|
&data_byte(0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e);
|
|
&data_byte(0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94);
|
|
&data_byte(0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf);
|
|
&data_byte(0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68);
|
|
&data_byte(0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16);
|
|
|
|
&data_byte(0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5);
|
|
&data_byte(0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76);
|
|
&data_byte(0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0);
|
|
&data_byte(0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0);
|
|
&data_byte(0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc);
|
|
&data_byte(0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15);
|
|
&data_byte(0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a);
|
|
&data_byte(0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75);
|
|
&data_byte(0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0);
|
|
&data_byte(0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84);
|
|
&data_byte(0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b);
|
|
&data_byte(0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf);
|
|
&data_byte(0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85);
|
|
&data_byte(0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8);
|
|
&data_byte(0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5);
|
|
&data_byte(0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2);
|
|
&data_byte(0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17);
|
|
&data_byte(0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73);
|
|
&data_byte(0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88);
|
|
&data_byte(0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb);
|
|
&data_byte(0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c);
|
|
&data_byte(0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79);
|
|
&data_byte(0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9);
|
|
&data_byte(0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08);
|
|
&data_byte(0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6);
|
|
&data_byte(0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a);
|
|
&data_byte(0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e);
|
|
&data_byte(0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e);
|
|
&data_byte(0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94);
|
|
&data_byte(0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf);
|
|
&data_byte(0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68);
|
|
&data_byte(0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16);
|
|
|
|
&data_byte(0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5);
|
|
&data_byte(0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76);
|
|
&data_byte(0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0);
|
|
&data_byte(0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0);
|
|
&data_byte(0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc);
|
|
&data_byte(0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15);
|
|
&data_byte(0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a);
|
|
&data_byte(0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75);
|
|
&data_byte(0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0);
|
|
&data_byte(0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84);
|
|
&data_byte(0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b);
|
|
&data_byte(0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf);
|
|
&data_byte(0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85);
|
|
&data_byte(0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8);
|
|
&data_byte(0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5);
|
|
&data_byte(0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2);
|
|
&data_byte(0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17);
|
|
&data_byte(0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73);
|
|
&data_byte(0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88);
|
|
&data_byte(0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb);
|
|
&data_byte(0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c);
|
|
&data_byte(0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79);
|
|
&data_byte(0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9);
|
|
&data_byte(0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08);
|
|
&data_byte(0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6);
|
|
&data_byte(0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a);
|
|
&data_byte(0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e);
|
|
&data_byte(0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e);
|
|
&data_byte(0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94);
|
|
&data_byte(0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf);
|
|
&data_byte(0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68);
|
|
&data_byte(0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16);
|
|
|
|
&data_byte(0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5);
|
|
&data_byte(0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76);
|
|
&data_byte(0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0);
|
|
&data_byte(0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0);
|
|
&data_byte(0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc);
|
|
&data_byte(0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15);
|
|
&data_byte(0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a);
|
|
&data_byte(0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75);
|
|
&data_byte(0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0);
|
|
&data_byte(0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84);
|
|
&data_byte(0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b);
|
|
&data_byte(0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf);
|
|
&data_byte(0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85);
|
|
&data_byte(0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8);
|
|
&data_byte(0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5);
|
|
&data_byte(0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2);
|
|
&data_byte(0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17);
|
|
&data_byte(0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73);
|
|
&data_byte(0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88);
|
|
&data_byte(0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb);
|
|
&data_byte(0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c);
|
|
&data_byte(0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79);
|
|
&data_byte(0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9);
|
|
&data_byte(0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08);
|
|
&data_byte(0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6);
|
|
&data_byte(0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a);
|
|
&data_byte(0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e);
|
|
&data_byte(0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e);
|
|
&data_byte(0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94);
|
|
&data_byte(0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf);
|
|
&data_byte(0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68);
|
|
&data_byte(0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16);
|
|
#rcon:
|
|
&data_word(0x00000001, 0x00000002, 0x00000004, 0x00000008);
|
|
&data_word(0x00000010, 0x00000020, 0x00000040, 0x00000080);
|
|
&data_word(0x0000001b, 0x00000036, 0x00000000, 0x00000000);
|
|
&data_word(0x00000000, 0x00000000, 0x00000000, 0x00000000);
|
|
&function_end_B("_x86_AES_encrypt");
|
|
|
|
# void asm_AES_encrypt (const void *inp,void *out,const AES_KEY *key);
|
|
&function_begin("asm_AES_encrypt");
|
|
&mov ($acc,&wparam(0)); # load inp
|
|
&mov ($key,&wparam(2)); # load key
|
|
|
|
&mov ($s0,"esp");
|
|
&sub ("esp",36);
|
|
&and ("esp",-64); # align to cache-line
|
|
|
|
# place stack frame just "above" the key schedule
|
|
&lea ($s1,&DWP(-64-63,$key));
|
|
&sub ($s1,"esp");
|
|
&neg ($s1);
|
|
&and ($s1,0x3C0); # modulo 1024, but aligned to cache-line
|
|
&sub ("esp",$s1);
|
|
&add ("esp",4); # 4 is reserved for caller's return address
|
|
&mov ($_esp,$s0); # save stack pointer
|
|
|
|
&call (&label("pic_point")); # make it PIC!
|
|
&set_label("pic_point");
|
|
&blindpop($tbl);
|
|
&picmeup($s0,"OPENSSL_ia32cap_P",$tbl,&label("pic_point")) if (!$x86only);
|
|
&lea ($tbl,&DWP(&label("AES_Te")."-".&label("pic_point"),$tbl));
|
|
|
|
# pick Te4 copy which can't "overlap" with stack frame or key schedule
|
|
&lea ($s1,&DWP(768-4,"esp"));
|
|
&sub ($s1,$tbl);
|
|
&and ($s1,0x300);
|
|
&lea ($tbl,&DWP(2048+128,$tbl,$s1));
|
|
|
|
if (!$x86only) {
|
|
&bt (&DWP(0,$s0),25); # check for SSE bit
|
|
&jnc (&label("x86"));
|
|
|
|
&movq ("mm0",&QWP(0,$acc));
|
|
&movq ("mm4",&QWP(8,$acc));
|
|
&call ("_sse_AES_encrypt_compact");
|
|
&mov ("esp",$_esp); # restore stack pointer
|
|
&mov ($acc,&wparam(1)); # load out
|
|
&movq (&QWP(0,$acc),"mm0"); # write output data
|
|
&movq (&QWP(8,$acc),"mm4");
|
|
&emms ();
|
|
&function_end_A();
|
|
}
|
|
&set_label("x86",16);
|
|
&mov ($_tbl,$tbl);
|
|
&mov ($s0,&DWP(0,$acc)); # load input data
|
|
&mov ($s1,&DWP(4,$acc));
|
|
&mov ($s2,&DWP(8,$acc));
|
|
&mov ($s3,&DWP(12,$acc));
|
|
&call ("_x86_AES_encrypt_compact");
|
|
&mov ("esp",$_esp); # restore stack pointer
|
|
&mov ($acc,&wparam(1)); # load out
|
|
&mov (&DWP(0,$acc),$s0); # write output data
|
|
&mov (&DWP(4,$acc),$s1);
|
|
&mov (&DWP(8,$acc),$s2);
|
|
&mov (&DWP(12,$acc),$s3);
|
|
&function_end("asm_AES_encrypt");
|
|
|
|
#--------------------------------------------------------------------#
|
|
|
|
######################################################################
|
|
# "Compact" block function
|
|
######################################################################
|
|
|
|
sub deccompact()
|
|
{ my $Fn = \&mov;
|
|
while ($#_>5) { pop(@_); $Fn=sub{}; }
|
|
my ($i,$td,@s)=@_;
|
|
my $tmp = $key;
|
|
my $out = $i==3?$s[0]:$acc;
|
|
|
|
# $Fn is used in first compact round and its purpose is to
|
|
# void restoration of some values from stack, so that after
|
|
# 4xdeccompact with extra argument $key, $s0 and $s1 values
|
|
# are left there...
|
|
if($i==3) { &$Fn ($key,$__key); }
|
|
else { &mov ($out,$s[0]); }
|
|
&and ($out,0xFF);
|
|
&movz ($out,&BP(-128,$td,$out,1));
|
|
|
|
if ($i==3) { $tmp=$s[1]; }
|
|
&movz ($tmp,&HB($s[1]));
|
|
&movz ($tmp,&BP(-128,$td,$tmp,1));
|
|
&shl ($tmp,8);
|
|
&xor ($out,$tmp);
|
|
|
|
if ($i==3) { $tmp=$s[2]; &mov ($s[1],$acc); }
|
|
else { mov ($tmp,$s[2]); }
|
|
&shr ($tmp,16);
|
|
&and ($tmp,0xFF);
|
|
&movz ($tmp,&BP(-128,$td,$tmp,1));
|
|
&shl ($tmp,16);
|
|
&xor ($out,$tmp);
|
|
|
|
if ($i==3) { $tmp=$s[3]; &$Fn ($s[2],$__s1); }
|
|
else { &mov ($tmp,$s[3]); }
|
|
&shr ($tmp,24);
|
|
&movz ($tmp,&BP(-128,$td,$tmp,1));
|
|
&shl ($tmp,24);
|
|
&xor ($out,$tmp);
|
|
if ($i<2) { &mov (&DWP(4+4*$i,"esp"),$out); }
|
|
if ($i==3) { &$Fn ($s[3],$__s0); }
|
|
}
|
|
|
|
# must be called with 2,3,0,1 as argument sequence!!!
|
|
sub dectransform()
|
|
{ my @s = ($s0,$s1,$s2,$s3);
|
|
my $i = shift;
|
|
my $tmp = $key;
|
|
my $tp2 = @s[($i+2)%4]; $tp2 = @s[2] if ($i==1);
|
|
my $tp4 = @s[($i+3)%4]; $tp4 = @s[3] if ($i==1);
|
|
my $tp8 = $tbl;
|
|
|
|
&mov ($tmp,0x80808080);
|
|
&and ($tmp,$s[$i]);
|
|
&mov ($acc,$tmp);
|
|
&shr ($tmp,7);
|
|
&lea ($tp2,&DWP(0,$s[$i],$s[$i]));
|
|
&sub ($acc,$tmp);
|
|
&and ($tp2,0xfefefefe);
|
|
&and ($acc,0x1b1b1b1b);
|
|
&xor ($tp2,$acc);
|
|
&mov ($tmp,0x80808080);
|
|
|
|
&and ($tmp,$tp2);
|
|
&mov ($acc,$tmp);
|
|
&shr ($tmp,7);
|
|
&lea ($tp4,&DWP(0,$tp2,$tp2));
|
|
&sub ($acc,$tmp);
|
|
&and ($tp4,0xfefefefe);
|
|
&and ($acc,0x1b1b1b1b);
|
|
&xor ($tp2,$s[$i]); # tp2^tp1
|
|
&xor ($tp4,$acc);
|
|
&mov ($tmp,0x80808080);
|
|
|
|
&and ($tmp,$tp4);
|
|
&mov ($acc,$tmp);
|
|
&shr ($tmp,7);
|
|
&lea ($tp8,&DWP(0,$tp4,$tp4));
|
|
&sub ($acc,$tmp);
|
|
&and ($tp8,0xfefefefe);
|
|
&and ($acc,0x1b1b1b1b);
|
|
&xor ($tp4,$s[$i]); # tp4^tp1
|
|
&rotl ($s[$i],8); # = ROTATE(tp1,8)
|
|
&xor ($tp8,$acc);
|
|
|
|
&xor ($s[$i],$tp2);
|
|
&xor ($tp2,$tp8);
|
|
&xor ($s[$i],$tp4);
|
|
&xor ($tp4,$tp8);
|
|
&rotl ($tp2,24);
|
|
&xor ($s[$i],$tp8); # ^= tp8^(tp4^tp1)^(tp2^tp1)
|
|
&rotl ($tp4,16);
|
|
&xor ($s[$i],$tp2); # ^= ROTATE(tp8^tp2^tp1,24)
|
|
&rotl ($tp8,8);
|
|
&xor ($s[$i],$tp4); # ^= ROTATE(tp8^tp4^tp1,16)
|
|
&mov ($s[0],$__s0) if($i==2); #prefetch $s0
|
|
&mov ($s[1],$__s1) if($i==3); #prefetch $s1
|
|
&mov ($s[2],$__s2) if($i==1);
|
|
&xor ($s[$i],$tp8); # ^= ROTATE(tp8,8)
|
|
|
|
&mov ($s[3],$__s3) if($i==1);
|
|
&mov (&DWP(4+4*$i,"esp"),$s[$i]) if($i>=2);
|
|
}
|
|
|
|
&function_begin_B("_x86_AES_decrypt_compact");
|
|
# note that caller is expected to allocate stack frame for me!
|
|
&mov ($__key,$key); # save key
|
|
|
|
&xor ($s0,&DWP(0,$key)); # xor with key
|
|
&xor ($s1,&DWP(4,$key));
|
|
&xor ($s2,&DWP(8,$key));
|
|
&xor ($s3,&DWP(12,$key));
|
|
|
|
&mov ($acc,&DWP(240,$key)); # load key->rounds
|
|
|
|
&lea ($acc,&DWP(-2,$acc,$acc));
|
|
&lea ($acc,&DWP(0,$key,$acc,8));
|
|
&mov ($__end,$acc); # end of key schedule
|
|
|
|
# prefetch Td4
|
|
&mov ($key,&DWP(0-128,$tbl));
|
|
&mov ($acc,&DWP(32-128,$tbl));
|
|
&mov ($key,&DWP(64-128,$tbl));
|
|
&mov ($acc,&DWP(96-128,$tbl));
|
|
&mov ($key,&DWP(128-128,$tbl));
|
|
&mov ($acc,&DWP(160-128,$tbl));
|
|
&mov ($key,&DWP(192-128,$tbl));
|
|
&mov ($acc,&DWP(224-128,$tbl));
|
|
|
|
&set_label("loop",16);
|
|
|
|
&deccompact(0,$tbl,$s0,$s3,$s2,$s1,1);
|
|
&deccompact(1,$tbl,$s1,$s0,$s3,$s2,1);
|
|
&deccompact(2,$tbl,$s2,$s1,$s0,$s3,1);
|
|
&deccompact(3,$tbl,$s3,$s2,$s1,$s0,1);
|
|
&dectransform(2);
|
|
&dectransform(3);
|
|
&dectransform(0);
|
|
&dectransform(1);
|
|
&mov ($key,$__key);
|
|
&mov ($tbl,$__tbl);
|
|
&add ($key,16); # advance rd_key
|
|
&xor ($s0,&DWP(0,$key));
|
|
&xor ($s1,&DWP(4,$key));
|
|
&xor ($s2,&DWP(8,$key));
|
|
&xor ($s3,&DWP(12,$key));
|
|
|
|
&cmp ($key,$__end);
|
|
&mov ($__key,$key);
|
|
&jb (&label("loop"));
|
|
|
|
&deccompact(0,$tbl,$s0,$s3,$s2,$s1);
|
|
&deccompact(1,$tbl,$s1,$s0,$s3,$s2);
|
|
&deccompact(2,$tbl,$s2,$s1,$s0,$s3);
|
|
&deccompact(3,$tbl,$s3,$s2,$s1,$s0);
|
|
|
|
&xor ($s0,&DWP(16,$key));
|
|
&xor ($s1,&DWP(20,$key));
|
|
&xor ($s2,&DWP(24,$key));
|
|
&xor ($s3,&DWP(28,$key));
|
|
|
|
&ret ();
|
|
&function_end_B("_x86_AES_decrypt_compact");
|
|
|
|
######################################################################
|
|
# "Compact" SSE block function.
|
|
######################################################################
|
|
|
|
sub sse_deccompact()
|
|
{
|
|
&pshufw ("mm1","mm0",0x0c); # 7, 6, 1, 0
|
|
&pshufw ("mm5","mm4",0x09); # 13,12,11,10
|
|
&movd ("eax","mm1"); # 7, 6, 1, 0
|
|
&movd ("ebx","mm5"); # 13,12,11,10
|
|
&mov ($__key,$key);
|
|
|
|
&movz ($acc,&LB("eax")); # 0
|
|
&movz ("edx",&HB("eax")); # 1
|
|
&pshufw ("mm2","mm0",0x06); # 3, 2, 5, 4
|
|
&movz ("ecx",&BP(-128,$tbl,$acc,1)); # 0
|
|
&movz ($key,&LB("ebx")); # 10
|
|
&movz ("edx",&BP(-128,$tbl,"edx",1)); # 1
|
|
&shr ("eax",16); # 7, 6
|
|
&shl ("edx",8); # 1
|
|
|
|
&movz ($acc,&BP(-128,$tbl,$key,1)); # 10
|
|
&movz ($key,&HB("ebx")); # 11
|
|
&shl ($acc,16); # 10
|
|
&pshufw ("mm6","mm4",0x03); # 9, 8,15,14
|
|
&or ("ecx",$acc); # 10
|
|
&movz ($acc,&BP(-128,$tbl,$key,1)); # 11
|
|
&movz ($key,&HB("eax")); # 7
|
|
&shl ($acc,24); # 11
|
|
&shr ("ebx",16); # 13,12
|
|
&or ("edx",$acc); # 11
|
|
|
|
&movz ($acc,&BP(-128,$tbl,$key,1)); # 7
|
|
&movz ($key,&HB("ebx")); # 13
|
|
&shl ($acc,24); # 7
|
|
&or ("ecx",$acc); # 7
|
|
&movz ($acc,&BP(-128,$tbl,$key,1)); # 13
|
|
&movz ($key,&LB("eax")); # 6
|
|
&shl ($acc,8); # 13
|
|
&movd ("eax","mm2"); # 3, 2, 5, 4
|
|
&or ("ecx",$acc); # 13
|
|
|
|
&movz ($acc,&BP(-128,$tbl,$key,1)); # 6
|
|
&movz ($key,&LB("ebx")); # 12
|
|
&shl ($acc,16); # 6
|
|
&movd ("ebx","mm6"); # 9, 8,15,14
|
|
&movd ("mm0","ecx"); # t[0] collected
|
|
&movz ("ecx",&BP(-128,$tbl,$key,1)); # 12
|
|
&movz ($key,&LB("eax")); # 4
|
|
&or ("ecx",$acc); # 12
|
|
|
|
&movz ($acc,&BP(-128,$tbl,$key,1)); # 4
|
|
&movz ($key,&LB("ebx")); # 14
|
|
&or ("edx",$acc); # 4
|
|
&movz ($acc,&BP(-128,$tbl,$key,1)); # 14
|
|
&movz ($key,&HB("eax")); # 5
|
|
&shl ($acc,16); # 14
|
|
&shr ("eax",16); # 3, 2
|
|
&or ("edx",$acc); # 14
|
|
|
|
&movz ($acc,&BP(-128,$tbl,$key,1)); # 5
|
|
&movz ($key,&HB("ebx")); # 15
|
|
&shr ("ebx",16); # 9, 8
|
|
&shl ($acc,8); # 5
|
|
&movd ("mm1","edx"); # t[1] collected
|
|
&movz ("edx",&BP(-128,$tbl,$key,1)); # 15
|
|
&movz ($key,&HB("ebx")); # 9
|
|
&shl ("edx",24); # 15
|
|
&and ("ebx",0xff); # 8
|
|
&or ("edx",$acc); # 15
|
|
|
|
&punpckldq ("mm0","mm1"); # t[0,1] collected
|
|
|
|
&movz ($acc,&BP(-128,$tbl,$key,1)); # 9
|
|
&movz ($key,&LB("eax")); # 2
|
|
&shl ($acc,8); # 9
|
|
&movz ("eax",&HB("eax")); # 3
|
|
&movz ("ebx",&BP(-128,$tbl,"ebx",1)); # 8
|
|
&or ("ecx",$acc); # 9
|
|
&movz ($acc,&BP(-128,$tbl,$key,1)); # 2
|
|
&or ("edx","ebx"); # 8
|
|
&shl ($acc,16); # 2
|
|
&movz ("eax",&BP(-128,$tbl,"eax",1)); # 3
|
|
&or ("edx",$acc); # 2
|
|
&shl ("eax",24); # 3
|
|
&or ("ecx","eax"); # 3
|
|
&mov ($key,$__key);
|
|
&movd ("mm4","edx"); # t[2] collected
|
|
&movd ("mm5","ecx"); # t[3] collected
|
|
|
|
&punpckldq ("mm4","mm5"); # t[2,3] collected
|
|
}
|
|
|
|
if (!$x86only) {
|
|
&function_begin_B("_sse_AES_decrypt_compact");
|
|
&pxor ("mm0",&QWP(0,$key)); # 7, 6, 5, 4, 3, 2, 1, 0
|
|
&pxor ("mm4",&QWP(8,$key)); # 15,14,13,12,11,10, 9, 8
|
|
|
|
# note that caller is expected to allocate stack frame for me!
|
|
&mov ($acc,&DWP(240,$key)); # load key->rounds
|
|
&lea ($acc,&DWP(-2,$acc,$acc));
|
|
&lea ($acc,&DWP(0,$key,$acc,8));
|
|
&mov ($__end,$acc); # end of key schedule
|
|
|
|
&mov ($s0,0x1b1b1b1b); # magic constant
|
|
&mov (&DWP(8,"esp"),$s0);
|
|
&mov (&DWP(12,"esp"),$s0);
|
|
|
|
# prefetch Td4
|
|
&mov ($s0,&DWP(0-128,$tbl));
|
|
&mov ($s1,&DWP(32-128,$tbl));
|
|
&mov ($s2,&DWP(64-128,$tbl));
|
|
&mov ($s3,&DWP(96-128,$tbl));
|
|
&mov ($s0,&DWP(128-128,$tbl));
|
|
&mov ($s1,&DWP(160-128,$tbl));
|
|
&mov ($s2,&DWP(192-128,$tbl));
|
|
&mov ($s3,&DWP(224-128,$tbl));
|
|
|
|
&set_label("loop",16);
|
|
&sse_deccompact();
|
|
&add ($key,16);
|
|
&cmp ($key,$__end);
|
|
&ja (&label("out"));
|
|
|
|
# ROTATE(x^y,N) == ROTATE(x,N)^ROTATE(y,N)
|
|
&movq ("mm3","mm0"); &movq ("mm7","mm4");
|
|
&movq ("mm2","mm0",1); &movq ("mm6","mm4",1);
|
|
&movq ("mm1","mm0"); &movq ("mm5","mm4");
|
|
&pshufw ("mm0","mm0",0xb1); &pshufw ("mm4","mm4",0xb1);# = ROTATE(tp0,16)
|
|
&pslld ("mm2",8); &pslld ("mm6",8);
|
|
&psrld ("mm3",8); &psrld ("mm7",8);
|
|
&pxor ("mm0","mm2"); &pxor ("mm4","mm6"); # ^= tp0<<8
|
|
&pxor ("mm0","mm3"); &pxor ("mm4","mm7"); # ^= tp0>>8
|
|
&pslld ("mm2",16); &pslld ("mm6",16);
|
|
&psrld ("mm3",16); &psrld ("mm7",16);
|
|
&pxor ("mm0","mm2"); &pxor ("mm4","mm6"); # ^= tp0<<24
|
|
&pxor ("mm0","mm3"); &pxor ("mm4","mm7"); # ^= tp0>>24
|
|
|
|
&movq ("mm3",&QWP(8,"esp"));
|
|
&pxor ("mm2","mm2"); &pxor ("mm6","mm6");
|
|
&pcmpgtb("mm2","mm1"); &pcmpgtb("mm6","mm5");
|
|
&pand ("mm2","mm3"); &pand ("mm6","mm3");
|
|
&paddb ("mm1","mm1"); &paddb ("mm5","mm5");
|
|
&pxor ("mm1","mm2"); &pxor ("mm5","mm6"); # tp2
|
|
&movq ("mm3","mm1"); &movq ("mm7","mm5");
|
|
&movq ("mm2","mm1"); &movq ("mm6","mm5");
|
|
&pxor ("mm0","mm1"); &pxor ("mm4","mm5"); # ^= tp2
|
|
&pslld ("mm3",24); &pslld ("mm7",24);
|
|
&psrld ("mm2",8); &psrld ("mm6",8);
|
|
&pxor ("mm0","mm3"); &pxor ("mm4","mm7"); # ^= tp2<<24
|
|
&pxor ("mm0","mm2"); &pxor ("mm4","mm6"); # ^= tp2>>8
|
|
|
|
&movq ("mm2",&QWP(8,"esp"));
|
|
&pxor ("mm3","mm3"); &pxor ("mm7","mm7");
|
|
&pcmpgtb("mm3","mm1"); &pcmpgtb("mm7","mm5");
|
|
&pand ("mm3","mm2"); &pand ("mm7","mm2");
|
|
&paddb ("mm1","mm1"); &paddb ("mm5","mm5");
|
|
&pxor ("mm1","mm3"); &pxor ("mm5","mm7"); # tp4
|
|
&pshufw ("mm3","mm1",0xb1); &pshufw ("mm7","mm5",0xb1);
|
|
&pxor ("mm0","mm1"); &pxor ("mm4","mm5"); # ^= tp4
|
|
&pxor ("mm0","mm3"); &pxor ("mm4","mm7"); # ^= ROTATE(tp4,16)
|
|
|
|
&pxor ("mm3","mm3"); &pxor ("mm7","mm7");
|
|
&pcmpgtb("mm3","mm1"); &pcmpgtb("mm7","mm5");
|
|
&pand ("mm3","mm2"); &pand ("mm7","mm2");
|
|
&paddb ("mm1","mm1"); &paddb ("mm5","mm5");
|
|
&pxor ("mm1","mm3"); &pxor ("mm5","mm7"); # tp8
|
|
&pxor ("mm0","mm1"); &pxor ("mm4","mm5"); # ^= tp8
|
|
&movq ("mm3","mm1"); &movq ("mm7","mm5");
|
|
&pshufw ("mm2","mm1",0xb1); &pshufw ("mm6","mm5",0xb1);
|
|
&pxor ("mm0","mm2"); &pxor ("mm4","mm6"); # ^= ROTATE(tp8,16)
|
|
&pslld ("mm1",8); &pslld ("mm5",8);
|
|
&psrld ("mm3",8); &psrld ("mm7",8);
|
|
&movq ("mm2",&QWP(0,$key)); &movq ("mm6",&QWP(8,$key));
|
|
&pxor ("mm0","mm1"); &pxor ("mm4","mm5"); # ^= tp8<<8
|
|
&pxor ("mm0","mm3"); &pxor ("mm4","mm7"); # ^= tp8>>8
|
|
&mov ($s0,&DWP(0-128,$tbl));
|
|
&pslld ("mm1",16); &pslld ("mm5",16);
|
|
&mov ($s1,&DWP(64-128,$tbl));
|
|
&psrld ("mm3",16); &psrld ("mm7",16);
|
|
&mov ($s2,&DWP(128-128,$tbl));
|
|
&pxor ("mm0","mm1"); &pxor ("mm4","mm5"); # ^= tp8<<24
|
|
&mov ($s3,&DWP(192-128,$tbl));
|
|
&pxor ("mm0","mm3"); &pxor ("mm4","mm7"); # ^= tp8>>24
|
|
|
|
&pxor ("mm0","mm2"); &pxor ("mm4","mm6");
|
|
&jmp (&label("loop"));
|
|
|
|
&set_label("out",16);
|
|
&pxor ("mm0",&QWP(0,$key));
|
|
&pxor ("mm4",&QWP(8,$key));
|
|
|
|
&ret ();
|
|
&function_end_B("_sse_AES_decrypt_compact");
|
|
}
|
|
|
|
######################################################################
|
|
# Vanilla block function.
|
|
######################################################################
|
|
|
|
sub decstep()
|
|
{ my ($i,$td,@s) = @_;
|
|
my $tmp = $key;
|
|
my $out = $i==3?$s[0]:$acc;
|
|
|
|
# no instructions are reordered, as performance appears
|
|
# optimal... or rather that all attempts to reorder didn't
|
|
# result in better performance [which by the way is not a
|
|
# bit lower than ecryption].
|
|
if($i==3) { &mov ($key,$__key); }
|
|
else { &mov ($out,$s[0]); }
|
|
&and ($out,0xFF);
|
|
&mov ($out,&DWP(0,$td,$out,8));
|
|
|
|
if ($i==3) { $tmp=$s[1]; }
|
|
&movz ($tmp,&HB($s[1]));
|
|
&xor ($out,&DWP(3,$td,$tmp,8));
|
|
|
|
if ($i==3) { $tmp=$s[2]; &mov ($s[1],$acc); }
|
|
else { &mov ($tmp,$s[2]); }
|
|
&shr ($tmp,16);
|
|
&and ($tmp,0xFF);
|
|
&xor ($out,&DWP(2,$td,$tmp,8));
|
|
|
|
if ($i==3) { $tmp=$s[3]; &mov ($s[2],$__s1); }
|
|
else { &mov ($tmp,$s[3]); }
|
|
&shr ($tmp,24);
|
|
&xor ($out,&DWP(1,$td,$tmp,8));
|
|
if ($i<2) { &mov (&DWP(4+4*$i,"esp"),$out); }
|
|
if ($i==3) { &mov ($s[3],$__s0); }
|
|
&comment();
|
|
}
|
|
|
|
sub declast()
|
|
{ my ($i,$td,@s)=@_;
|
|
my $tmp = $key;
|
|
my $out = $i==3?$s[0]:$acc;
|
|
|
|
if($i==0) { &lea ($td,&DWP(2048+128,$td));
|
|
&mov ($tmp,&DWP(0-128,$td));
|
|
&mov ($acc,&DWP(32-128,$td));
|
|
&mov ($tmp,&DWP(64-128,$td));
|
|
&mov ($acc,&DWP(96-128,$td));
|
|
&mov ($tmp,&DWP(128-128,$td));
|
|
&mov ($acc,&DWP(160-128,$td));
|
|
&mov ($tmp,&DWP(192-128,$td));
|
|
&mov ($acc,&DWP(224-128,$td));
|
|
&lea ($td,&DWP(-128,$td)); }
|
|
if($i==3) { &mov ($key,$__key); }
|
|
else { &mov ($out,$s[0]); }
|
|
&and ($out,0xFF);
|
|
&movz ($out,&BP(0,$td,$out,1));
|
|
|
|
if ($i==3) { $tmp=$s[1]; }
|
|
&movz ($tmp,&HB($s[1]));
|
|
&movz ($tmp,&BP(0,$td,$tmp,1));
|
|
&shl ($tmp,8);
|
|
&xor ($out,$tmp);
|
|
|
|
if ($i==3) { $tmp=$s[2]; &mov ($s[1],$acc); }
|
|
else { mov ($tmp,$s[2]); }
|
|
&shr ($tmp,16);
|
|
&and ($tmp,0xFF);
|
|
&movz ($tmp,&BP(0,$td,$tmp,1));
|
|
&shl ($tmp,16);
|
|
&xor ($out,$tmp);
|
|
|
|
if ($i==3) { $tmp=$s[3]; &mov ($s[2],$__s1); }
|
|
else { &mov ($tmp,$s[3]); }
|
|
&shr ($tmp,24);
|
|
&movz ($tmp,&BP(0,$td,$tmp,1));
|
|
&shl ($tmp,24);
|
|
&xor ($out,$tmp);
|
|
if ($i<2) { &mov (&DWP(4+4*$i,"esp"),$out); }
|
|
if ($i==3) { &mov ($s[3],$__s0);
|
|
&lea ($td,&DWP(-2048,$td)); }
|
|
}
|
|
|
|
&function_begin_B("_x86_AES_decrypt");
|
|
# note that caller is expected to allocate stack frame for me!
|
|
&mov ($__key,$key); # save key
|
|
|
|
&xor ($s0,&DWP(0,$key)); # xor with key
|
|
&xor ($s1,&DWP(4,$key));
|
|
&xor ($s2,&DWP(8,$key));
|
|
&xor ($s3,&DWP(12,$key));
|
|
|
|
&mov ($acc,&DWP(240,$key)); # load key->rounds
|
|
|
|
if ($small_footprint) {
|
|
&lea ($acc,&DWP(-2,$acc,$acc));
|
|
&lea ($acc,&DWP(0,$key,$acc,8));
|
|
&mov ($__end,$acc); # end of key schedule
|
|
&set_label("loop",16);
|
|
&decstep(0,$tbl,$s0,$s3,$s2,$s1);
|
|
&decstep(1,$tbl,$s1,$s0,$s3,$s2);
|
|
&decstep(2,$tbl,$s2,$s1,$s0,$s3);
|
|
&decstep(3,$tbl,$s3,$s2,$s1,$s0);
|
|
&add ($key,16); # advance rd_key
|
|
&xor ($s0,&DWP(0,$key));
|
|
&xor ($s1,&DWP(4,$key));
|
|
&xor ($s2,&DWP(8,$key));
|
|
&xor ($s3,&DWP(12,$key));
|
|
&cmp ($key,$__end);
|
|
&mov ($__key,$key);
|
|
&jb (&label("loop"));
|
|
}
|
|
else {
|
|
&cmp ($acc,10);
|
|
&jle (&label("10rounds"));
|
|
&cmp ($acc,12);
|
|
&jle (&label("12rounds"));
|
|
|
|
&set_label("14rounds",4);
|
|
for ($i=1;$i<3;$i++) {
|
|
&decstep(0,$tbl,$s0,$s3,$s2,$s1);
|
|
&decstep(1,$tbl,$s1,$s0,$s3,$s2);
|
|
&decstep(2,$tbl,$s2,$s1,$s0,$s3);
|
|
&decstep(3,$tbl,$s3,$s2,$s1,$s0);
|
|
&xor ($s0,&DWP(16*$i+0,$key));
|
|
&xor ($s1,&DWP(16*$i+4,$key));
|
|
&xor ($s2,&DWP(16*$i+8,$key));
|
|
&xor ($s3,&DWP(16*$i+12,$key));
|
|
}
|
|
&add ($key,32);
|
|
&mov ($__key,$key); # advance rd_key
|
|
&set_label("12rounds",4);
|
|
for ($i=1;$i<3;$i++) {
|
|
&decstep(0,$tbl,$s0,$s3,$s2,$s1);
|
|
&decstep(1,$tbl,$s1,$s0,$s3,$s2);
|
|
&decstep(2,$tbl,$s2,$s1,$s0,$s3);
|
|
&decstep(3,$tbl,$s3,$s2,$s1,$s0);
|
|
&xor ($s0,&DWP(16*$i+0,$key));
|
|
&xor ($s1,&DWP(16*$i+4,$key));
|
|
&xor ($s2,&DWP(16*$i+8,$key));
|
|
&xor ($s3,&DWP(16*$i+12,$key));
|
|
}
|
|
&add ($key,32);
|
|
&mov ($__key,$key); # advance rd_key
|
|
&set_label("10rounds",4);
|
|
for ($i=1;$i<10;$i++) {
|
|
&decstep(0,$tbl,$s0,$s3,$s2,$s1);
|
|
&decstep(1,$tbl,$s1,$s0,$s3,$s2);
|
|
&decstep(2,$tbl,$s2,$s1,$s0,$s3);
|
|
&decstep(3,$tbl,$s3,$s2,$s1,$s0);
|
|
&xor ($s0,&DWP(16*$i+0,$key));
|
|
&xor ($s1,&DWP(16*$i+4,$key));
|
|
&xor ($s2,&DWP(16*$i+8,$key));
|
|
&xor ($s3,&DWP(16*$i+12,$key));
|
|
}
|
|
}
|
|
|
|
&declast(0,$tbl,$s0,$s3,$s2,$s1);
|
|
&declast(1,$tbl,$s1,$s0,$s3,$s2);
|
|
&declast(2,$tbl,$s2,$s1,$s0,$s3);
|
|
&declast(3,$tbl,$s3,$s2,$s1,$s0);
|
|
|
|
&add ($key,$small_footprint?16:160);
|
|
&xor ($s0,&DWP(0,$key));
|
|
&xor ($s1,&DWP(4,$key));
|
|
&xor ($s2,&DWP(8,$key));
|
|
&xor ($s3,&DWP(12,$key));
|
|
|
|
&ret ();
|
|
|
|
&set_label("AES_Td",64); # Yes! I keep it in the code segment!
|
|
&_data_word(0x50a7f451, 0x5365417e, 0xc3a4171a, 0x965e273a);
|
|
&_data_word(0xcb6bab3b, 0xf1459d1f, 0xab58faac, 0x9303e34b);
|
|
&_data_word(0x55fa3020, 0xf66d76ad, 0x9176cc88, 0x254c02f5);
|
|
&_data_word(0xfcd7e54f, 0xd7cb2ac5, 0x80443526, 0x8fa362b5);
|
|
&_data_word(0x495ab1de, 0x671bba25, 0x980eea45, 0xe1c0fe5d);
|
|
&_data_word(0x02752fc3, 0x12f04c81, 0xa397468d, 0xc6f9d36b);
|
|
&_data_word(0xe75f8f03, 0x959c9215, 0xeb7a6dbf, 0xda595295);
|
|
&_data_word(0x2d83bed4, 0xd3217458, 0x2969e049, 0x44c8c98e);
|
|
&_data_word(0x6a89c275, 0x78798ef4, 0x6b3e5899, 0xdd71b927);
|
|
&_data_word(0xb64fe1be, 0x17ad88f0, 0x66ac20c9, 0xb43ace7d);
|
|
&_data_word(0x184adf63, 0x82311ae5, 0x60335197, 0x457f5362);
|
|
&_data_word(0xe07764b1, 0x84ae6bbb, 0x1ca081fe, 0x942b08f9);
|
|
&_data_word(0x58684870, 0x19fd458f, 0x876cde94, 0xb7f87b52);
|
|
&_data_word(0x23d373ab, 0xe2024b72, 0x578f1fe3, 0x2aab5566);
|
|
&_data_word(0x0728ebb2, 0x03c2b52f, 0x9a7bc586, 0xa50837d3);
|
|
&_data_word(0xf2872830, 0xb2a5bf23, 0xba6a0302, 0x5c8216ed);
|
|
&_data_word(0x2b1ccf8a, 0x92b479a7, 0xf0f207f3, 0xa1e2694e);
|
|
&_data_word(0xcdf4da65, 0xd5be0506, 0x1f6234d1, 0x8afea6c4);
|
|
&_data_word(0x9d532e34, 0xa055f3a2, 0x32e18a05, 0x75ebf6a4);
|
|
&_data_word(0x39ec830b, 0xaaef6040, 0x069f715e, 0x51106ebd);
|
|
&_data_word(0xf98a213e, 0x3d06dd96, 0xae053edd, 0x46bde64d);
|
|
&_data_word(0xb58d5491, 0x055dc471, 0x6fd40604, 0xff155060);
|
|
&_data_word(0x24fb9819, 0x97e9bdd6, 0xcc434089, 0x779ed967);
|
|
&_data_word(0xbd42e8b0, 0x888b8907, 0x385b19e7, 0xdbeec879);
|
|
&_data_word(0x470a7ca1, 0xe90f427c, 0xc91e84f8, 0x00000000);
|
|
&_data_word(0x83868009, 0x48ed2b32, 0xac70111e, 0x4e725a6c);
|
|
&_data_word(0xfbff0efd, 0x5638850f, 0x1ed5ae3d, 0x27392d36);
|
|
&_data_word(0x64d90f0a, 0x21a65c68, 0xd1545b9b, 0x3a2e3624);
|
|
&_data_word(0xb1670a0c, 0x0fe75793, 0xd296eeb4, 0x9e919b1b);
|
|
&_data_word(0x4fc5c080, 0xa220dc61, 0x694b775a, 0x161a121c);
|
|
&_data_word(0x0aba93e2, 0xe52aa0c0, 0x43e0223c, 0x1d171b12);
|
|
&_data_word(0x0b0d090e, 0xadc78bf2, 0xb9a8b62d, 0xc8a91e14);
|
|
&_data_word(0x8519f157, 0x4c0775af, 0xbbdd99ee, 0xfd607fa3);
|
|
&_data_word(0x9f2601f7, 0xbcf5725c, 0xc53b6644, 0x347efb5b);
|
|
&_data_word(0x7629438b, 0xdcc623cb, 0x68fcedb6, 0x63f1e4b8);
|
|
&_data_word(0xcadc31d7, 0x10856342, 0x40229713, 0x2011c684);
|
|
&_data_word(0x7d244a85, 0xf83dbbd2, 0x1132f9ae, 0x6da129c7);
|
|
&_data_word(0x4b2f9e1d, 0xf330b2dc, 0xec52860d, 0xd0e3c177);
|
|
&_data_word(0x6c16b32b, 0x99b970a9, 0xfa489411, 0x2264e947);
|
|
&_data_word(0xc48cfca8, 0x1a3ff0a0, 0xd82c7d56, 0xef903322);
|
|
&_data_word(0xc74e4987, 0xc1d138d9, 0xfea2ca8c, 0x360bd498);
|
|
&_data_word(0xcf81f5a6, 0x28de7aa5, 0x268eb7da, 0xa4bfad3f);
|
|
&_data_word(0xe49d3a2c, 0x0d927850, 0x9bcc5f6a, 0x62467e54);
|
|
&_data_word(0xc2138df6, 0xe8b8d890, 0x5ef7392e, 0xf5afc382);
|
|
&_data_word(0xbe805d9f, 0x7c93d069, 0xa92dd56f, 0xb31225cf);
|
|
&_data_word(0x3b99acc8, 0xa77d1810, 0x6e639ce8, 0x7bbb3bdb);
|
|
&_data_word(0x097826cd, 0xf418596e, 0x01b79aec, 0xa89a4f83);
|
|
&_data_word(0x656e95e6, 0x7ee6ffaa, 0x08cfbc21, 0xe6e815ef);
|
|
&_data_word(0xd99be7ba, 0xce366f4a, 0xd4099fea, 0xd67cb029);
|
|
&_data_word(0xafb2a431, 0x31233f2a, 0x3094a5c6, 0xc066a235);
|
|
&_data_word(0x37bc4e74, 0xa6ca82fc, 0xb0d090e0, 0x15d8a733);
|
|
&_data_word(0x4a9804f1, 0xf7daec41, 0x0e50cd7f, 0x2ff69117);
|
|
&_data_word(0x8dd64d76, 0x4db0ef43, 0x544daacc, 0xdf0496e4);
|
|
&_data_word(0xe3b5d19e, 0x1b886a4c, 0xb81f2cc1, 0x7f516546);
|
|
&_data_word(0x04ea5e9d, 0x5d358c01, 0x737487fa, 0x2e410bfb);
|
|
&_data_word(0x5a1d67b3, 0x52d2db92, 0x335610e9, 0x1347d66d);
|
|
&_data_word(0x8c61d79a, 0x7a0ca137, 0x8e14f859, 0x893c13eb);
|
|
&_data_word(0xee27a9ce, 0x35c961b7, 0xede51ce1, 0x3cb1477a);
|
|
&_data_word(0x59dfd29c, 0x3f73f255, 0x79ce1418, 0xbf37c773);
|
|
&_data_word(0xeacdf753, 0x5baafd5f, 0x146f3ddf, 0x86db4478);
|
|
&_data_word(0x81f3afca, 0x3ec468b9, 0x2c342438, 0x5f40a3c2);
|
|
&_data_word(0x72c31d16, 0x0c25e2bc, 0x8b493c28, 0x41950dff);
|
|
&_data_word(0x7101a839, 0xdeb30c08, 0x9ce4b4d8, 0x90c15664);
|
|
&_data_word(0x6184cb7b, 0x70b632d5, 0x745c6c48, 0x4257b8d0);
|
|
|
|
#Td4: # four copies of Td4 to choose from to avoid L1 aliasing
|
|
&data_byte(0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38);
|
|
&data_byte(0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb);
|
|
&data_byte(0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87);
|
|
&data_byte(0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb);
|
|
&data_byte(0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d);
|
|
&data_byte(0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e);
|
|
&data_byte(0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2);
|
|
&data_byte(0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25);
|
|
&data_byte(0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16);
|
|
&data_byte(0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92);
|
|
&data_byte(0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda);
|
|
&data_byte(0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84);
|
|
&data_byte(0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a);
|
|
&data_byte(0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06);
|
|
&data_byte(0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02);
|
|
&data_byte(0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b);
|
|
&data_byte(0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea);
|
|
&data_byte(0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73);
|
|
&data_byte(0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85);
|
|
&data_byte(0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e);
|
|
&data_byte(0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89);
|
|
&data_byte(0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b);
|
|
&data_byte(0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20);
|
|
&data_byte(0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4);
|
|
&data_byte(0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31);
|
|
&data_byte(0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f);
|
|
&data_byte(0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d);
|
|
&data_byte(0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef);
|
|
&data_byte(0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0);
|
|
&data_byte(0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61);
|
|
&data_byte(0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26);
|
|
&data_byte(0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d);
|
|
|
|
&data_byte(0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38);
|
|
&data_byte(0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb);
|
|
&data_byte(0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87);
|
|
&data_byte(0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb);
|
|
&data_byte(0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d);
|
|
&data_byte(0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e);
|
|
&data_byte(0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2);
|
|
&data_byte(0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25);
|
|
&data_byte(0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16);
|
|
&data_byte(0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92);
|
|
&data_byte(0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda);
|
|
&data_byte(0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84);
|
|
&data_byte(0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a);
|
|
&data_byte(0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06);
|
|
&data_byte(0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02);
|
|
&data_byte(0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b);
|
|
&data_byte(0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea);
|
|
&data_byte(0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73);
|
|
&data_byte(0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85);
|
|
&data_byte(0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e);
|
|
&data_byte(0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89);
|
|
&data_byte(0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b);
|
|
&data_byte(0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20);
|
|
&data_byte(0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4);
|
|
&data_byte(0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31);
|
|
&data_byte(0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f);
|
|
&data_byte(0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d);
|
|
&data_byte(0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef);
|
|
&data_byte(0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0);
|
|
&data_byte(0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61);
|
|
&data_byte(0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26);
|
|
&data_byte(0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d);
|
|
|
|
&data_byte(0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38);
|
|
&data_byte(0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb);
|
|
&data_byte(0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87);
|
|
&data_byte(0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb);
|
|
&data_byte(0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d);
|
|
&data_byte(0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e);
|
|
&data_byte(0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2);
|
|
&data_byte(0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25);
|
|
&data_byte(0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16);
|
|
&data_byte(0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92);
|
|
&data_byte(0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda);
|
|
&data_byte(0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84);
|
|
&data_byte(0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a);
|
|
&data_byte(0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06);
|
|
&data_byte(0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02);
|
|
&data_byte(0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b);
|
|
&data_byte(0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea);
|
|
&data_byte(0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73);
|
|
&data_byte(0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85);
|
|
&data_byte(0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e);
|
|
&data_byte(0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89);
|
|
&data_byte(0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b);
|
|
&data_byte(0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20);
|
|
&data_byte(0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4);
|
|
&data_byte(0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31);
|
|
&data_byte(0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f);
|
|
&data_byte(0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d);
|
|
&data_byte(0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef);
|
|
&data_byte(0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0);
|
|
&data_byte(0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61);
|
|
&data_byte(0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26);
|
|
&data_byte(0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d);
|
|
|
|
&data_byte(0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38);
|
|
&data_byte(0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb);
|
|
&data_byte(0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87);
|
|
&data_byte(0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb);
|
|
&data_byte(0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d);
|
|
&data_byte(0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e);
|
|
&data_byte(0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2);
|
|
&data_byte(0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25);
|
|
&data_byte(0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16);
|
|
&data_byte(0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92);
|
|
&data_byte(0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda);
|
|
&data_byte(0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84);
|
|
&data_byte(0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a);
|
|
&data_byte(0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06);
|
|
&data_byte(0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02);
|
|
&data_byte(0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b);
|
|
&data_byte(0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea);
|
|
&data_byte(0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73);
|
|
&data_byte(0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85);
|
|
&data_byte(0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e);
|
|
&data_byte(0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89);
|
|
&data_byte(0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b);
|
|
&data_byte(0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20);
|
|
&data_byte(0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4);
|
|
&data_byte(0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31);
|
|
&data_byte(0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f);
|
|
&data_byte(0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d);
|
|
&data_byte(0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef);
|
|
&data_byte(0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0);
|
|
&data_byte(0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61);
|
|
&data_byte(0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26);
|
|
&data_byte(0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d);
|
|
&function_end_B("_x86_AES_decrypt");
|
|
|
|
# void asm_AES_decrypt (const void *inp,void *out,const AES_KEY *key);
|
|
&function_begin("asm_AES_decrypt");
|
|
&mov ($acc,&wparam(0)); # load inp
|
|
&mov ($key,&wparam(2)); # load key
|
|
|
|
&mov ($s0,"esp");
|
|
&sub ("esp",36);
|
|
&and ("esp",-64); # align to cache-line
|
|
|
|
# place stack frame just "above" the key schedule
|
|
&lea ($s1,&DWP(-64-63,$key));
|
|
&sub ($s1,"esp");
|
|
&neg ($s1);
|
|
&and ($s1,0x3C0); # modulo 1024, but aligned to cache-line
|
|
&sub ("esp",$s1);
|
|
&add ("esp",4); # 4 is reserved for caller's return address
|
|
&mov ($_esp,$s0); # save stack pointer
|
|
|
|
&call (&label("pic_point")); # make it PIC!
|
|
&set_label("pic_point");
|
|
&blindpop($tbl);
|
|
&picmeup($s0,"OPENSSL_ia32cap_P",$tbl,&label("pic_point")) if(!$x86only);
|
|
&lea ($tbl,&DWP(&label("AES_Td")."-".&label("pic_point"),$tbl));
|
|
|
|
# pick Td4 copy which can't "overlap" with stack frame or key schedule
|
|
&lea ($s1,&DWP(768-4,"esp"));
|
|
&sub ($s1,$tbl);
|
|
&and ($s1,0x300);
|
|
&lea ($tbl,&DWP(2048+128,$tbl,$s1));
|
|
|
|
if (!$x86only) {
|
|
&bt (&DWP(0,$s0),25); # check for SSE bit
|
|
&jnc (&label("x86"));
|
|
|
|
&movq ("mm0",&QWP(0,$acc));
|
|
&movq ("mm4",&QWP(8,$acc));
|
|
&call ("_sse_AES_decrypt_compact");
|
|
&mov ("esp",$_esp); # restore stack pointer
|
|
&mov ($acc,&wparam(1)); # load out
|
|
&movq (&QWP(0,$acc),"mm0"); # write output data
|
|
&movq (&QWP(8,$acc),"mm4");
|
|
&emms ();
|
|
&function_end_A();
|
|
}
|
|
&set_label("x86",16);
|
|
&mov ($_tbl,$tbl);
|
|
&mov ($s0,&DWP(0,$acc)); # load input data
|
|
&mov ($s1,&DWP(4,$acc));
|
|
&mov ($s2,&DWP(8,$acc));
|
|
&mov ($s3,&DWP(12,$acc));
|
|
&call ("_x86_AES_decrypt_compact");
|
|
&mov ("esp",$_esp); # restore stack pointer
|
|
&mov ($acc,&wparam(1)); # load out
|
|
&mov (&DWP(0,$acc),$s0); # write output data
|
|
&mov (&DWP(4,$acc),$s1);
|
|
&mov (&DWP(8,$acc),$s2);
|
|
&mov (&DWP(12,$acc),$s3);
|
|
&function_end("asm_AES_decrypt");
|
|
|
|
# void asm_AES_cbc_encrypt (const void char *inp, unsigned char *out,
|
|
# size_t length, const AES_KEY *key,
|
|
# unsigned char *ivp,const int enc);
|
|
{
|
|
# stack frame layout
|
|
# -4(%esp) # return address 0(%esp)
|
|
# 0(%esp) # s0 backing store 4(%esp)
|
|
# 4(%esp) # s1 backing store 8(%esp)
|
|
# 8(%esp) # s2 backing store 12(%esp)
|
|
# 12(%esp) # s3 backing store 16(%esp)
|
|
# 16(%esp) # key backup 20(%esp)
|
|
# 20(%esp) # end of key schedule 24(%esp)
|
|
# 24(%esp) # %ebp backup 28(%esp)
|
|
# 28(%esp) # %esp backup
|
|
my $_inp=&DWP(32,"esp"); # copy of wparam(0)
|
|
my $_out=&DWP(36,"esp"); # copy of wparam(1)
|
|
my $_len=&DWP(40,"esp"); # copy of wparam(2)
|
|
my $_key=&DWP(44,"esp"); # copy of wparam(3)
|
|
my $_ivp=&DWP(48,"esp"); # copy of wparam(4)
|
|
my $_tmp=&DWP(52,"esp"); # volatile variable
|
|
#
|
|
my $ivec=&DWP(60,"esp"); # ivec[16]
|
|
my $aes_key=&DWP(76,"esp"); # copy of aes_key
|
|
my $mark=&DWP(76+240,"esp"); # copy of aes_key->rounds
|
|
|
|
&function_begin("asm_AES_cbc_encrypt");
|
|
&mov ($s2 eq "ecx"? $s2 : "",&wparam(2)); # load len
|
|
&cmp ($s2,0);
|
|
&je (&label("drop_out"));
|
|
|
|
&call (&label("pic_point")); # make it PIC!
|
|
&set_label("pic_point");
|
|
&blindpop($tbl);
|
|
&picmeup($s0,"OPENSSL_ia32cap_P",$tbl,&label("pic_point")) if(!$x86only);
|
|
|
|
&cmp (&wparam(5),0);
|
|
&lea ($tbl,&DWP(&label("AES_Te")."-".&label("pic_point"),$tbl));
|
|
&jne (&label("picked_te"));
|
|
&lea ($tbl,&DWP(&label("AES_Td")."-".&label("AES_Te"),$tbl));
|
|
&set_label("picked_te");
|
|
|
|
# one can argue if this is required
|
|
&pushf ();
|
|
&cld ();
|
|
|
|
&cmp ($s2,$speed_limit);
|
|
&jb (&label("slow_way"));
|
|
&test ($s2,15);
|
|
&jnz (&label("slow_way"));
|
|
if (!$x86only) {
|
|
&bt (&DWP(0,$s0),28); # check for hyper-threading bit
|
|
&jc (&label("slow_way"));
|
|
}
|
|
# pre-allocate aligned stack frame...
|
|
&lea ($acc,&DWP(-80-244,"esp"));
|
|
&and ($acc,-64);
|
|
|
|
# ... and make sure it doesn't alias with $tbl modulo 4096
|
|
&mov ($s0,$tbl);
|
|
&lea ($s1,&DWP(2048+256,$tbl));
|
|
&mov ($s3,$acc);
|
|
&and ($s0,0xfff); # s = %ebp&0xfff
|
|
&and ($s1,0xfff); # e = (%ebp+2048+256)&0xfff
|
|
&and ($s3,0xfff); # p = %esp&0xfff
|
|
|
|
&cmp ($s3,$s1); # if (p>=e) %esp =- (p-e);
|
|
&jb (&label("tbl_break_out"));
|
|
&sub ($s3,$s1);
|
|
&sub ($acc,$s3);
|
|
&jmp (&label("tbl_ok"));
|
|
&set_label("tbl_break_out",4); # else %esp -= (p-s)&0xfff + framesz;
|
|
&sub ($s3,$s0);
|
|
&and ($s3,0xfff);
|
|
&add ($s3,384);
|
|
&sub ($acc,$s3);
|
|
&set_label("tbl_ok",4);
|
|
|
|
&lea ($s3,&wparam(0)); # obtain pointer to parameter block
|
|
&exch ("esp",$acc); # allocate stack frame
|
|
&add ("esp",4); # reserve for return address!
|
|
&mov ($_tbl,$tbl); # save %ebp
|
|
&mov ($_esp,$acc); # save %esp
|
|
|
|
&mov ($s0,&DWP(0,$s3)); # load inp
|
|
&mov ($s1,&DWP(4,$s3)); # load out
|
|
#&mov ($s2,&DWP(8,$s3)); # load len
|
|
&mov ($key,&DWP(12,$s3)); # load key
|
|
&mov ($acc,&DWP(16,$s3)); # load ivp
|
|
&mov ($s3,&DWP(20,$s3)); # load enc flag
|
|
|
|
&mov ($_inp,$s0); # save copy of inp
|
|
&mov ($_out,$s1); # save copy of out
|
|
&mov ($_len,$s2); # save copy of len
|
|
&mov ($_key,$key); # save copy of key
|
|
&mov ($_ivp,$acc); # save copy of ivp
|
|
|
|
&mov ($mark,0); # copy of aes_key->rounds = 0;
|
|
# do we copy key schedule to stack?
|
|
&mov ($s1 eq "ebx" ? $s1 : "",$key);
|
|
&mov ($s2 eq "ecx" ? $s2 : "",244/4);
|
|
&sub ($s1,$tbl);
|
|
&mov ("esi",$key);
|
|
&and ($s1,0xfff);
|
|
&lea ("edi",$aes_key);
|
|
&cmp ($s1,2048+256);
|
|
&jb (&label("do_copy"));
|
|
&cmp ($s1,4096-244);
|
|
&jb (&label("skip_copy"));
|
|
&set_label("do_copy",4);
|
|
&mov ($_key,"edi");
|
|
&data_word(0xA5F3F689); # rep movsd
|
|
&set_label("skip_copy");
|
|
|
|
&mov ($key,16);
|
|
&set_label("prefetch_tbl",4);
|
|
&mov ($s0,&DWP(0,$tbl));
|
|
&mov ($s1,&DWP(32,$tbl));
|
|
&mov ($s2,&DWP(64,$tbl));
|
|
&mov ($acc,&DWP(96,$tbl));
|
|
&lea ($tbl,&DWP(128,$tbl));
|
|
&sub ($key,1);
|
|
&jnz (&label("prefetch_tbl"));
|
|
&sub ($tbl,2048);
|
|
|
|
&mov ($acc,$_inp);
|
|
&mov ($key,$_ivp);
|
|
|
|
&cmp ($s3,0);
|
|
&je (&label("fast_decrypt"));
|
|
|
|
#----------------------------- ENCRYPT -----------------------------#
|
|
&mov ($s0,&DWP(0,$key)); # load iv
|
|
&mov ($s1,&DWP(4,$key));
|
|
|
|
&set_label("fast_enc_loop",16);
|
|
&mov ($s2,&DWP(8,$key));
|
|
&mov ($s3,&DWP(12,$key));
|
|
|
|
&xor ($s0,&DWP(0,$acc)); # xor input data
|
|
&xor ($s1,&DWP(4,$acc));
|
|
&xor ($s2,&DWP(8,$acc));
|
|
&xor ($s3,&DWP(12,$acc));
|
|
|
|
&mov ($key,$_key); # load key
|
|
&call ("_x86_AES_encrypt");
|
|
|
|
&mov ($acc,$_inp); # load inp
|
|
&mov ($key,$_out); # load out
|
|
|
|
&mov (&DWP(0,$key),$s0); # save output data
|
|
&mov (&DWP(4,$key),$s1);
|
|
&mov (&DWP(8,$key),$s2);
|
|
&mov (&DWP(12,$key),$s3);
|
|
|
|
&lea ($acc,&DWP(16,$acc)); # advance inp
|
|
&mov ($s2,$_len); # load len
|
|
&mov ($_inp,$acc); # save inp
|
|
&lea ($s3,&DWP(16,$key)); # advance out
|
|
&mov ($_out,$s3); # save out
|
|
&sub ($s2,16); # decrease len
|
|
&mov ($_len,$s2); # save len
|
|
&jnz (&label("fast_enc_loop"));
|
|
&mov ($acc,$_ivp); # load ivp
|
|
&mov ($s2,&DWP(8,$key)); # restore last 2 dwords
|
|
&mov ($s3,&DWP(12,$key));
|
|
&mov (&DWP(0,$acc),$s0); # save ivec
|
|
&mov (&DWP(4,$acc),$s1);
|
|
&mov (&DWP(8,$acc),$s2);
|
|
&mov (&DWP(12,$acc),$s3);
|
|
|
|
&cmp ($mark,0); # was the key schedule copied?
|
|
&mov ("edi",$_key);
|
|
&je (&label("skip_ezero"));
|
|
# zero copy of key schedule
|
|
&mov ("ecx",240/4);
|
|
&xor ("eax","eax");
|
|
&align (4);
|
|
&data_word(0xABF3F689); # rep stosd
|
|
&set_label("skip_ezero");
|
|
&mov ("esp",$_esp);
|
|
&popf ();
|
|
&set_label("drop_out");
|
|
&function_end_A();
|
|
&pushf (); # kludge, never executed
|
|
|
|
#----------------------------- DECRYPT -----------------------------#
|
|
&set_label("fast_decrypt",16);
|
|
|
|
&cmp ($acc,$_out);
|
|
&je (&label("fast_dec_in_place")); # in-place processing...
|
|
|
|
&mov ($_tmp,$key);
|
|
|
|
&align (4);
|
|
&set_label("fast_dec_loop",16);
|
|
&mov ($s0,&DWP(0,$acc)); # read input
|
|
&mov ($s1,&DWP(4,$acc));
|
|
&mov ($s2,&DWP(8,$acc));
|
|
&mov ($s3,&DWP(12,$acc));
|
|
|
|
&mov ($key,$_key); # load key
|
|
&call ("_x86_AES_decrypt");
|
|
|
|
&mov ($key,$_tmp); # load ivp
|
|
&mov ($acc,$_len); # load len
|
|
&xor ($s0,&DWP(0,$key)); # xor iv
|
|
&xor ($s1,&DWP(4,$key));
|
|
&xor ($s2,&DWP(8,$key));
|
|
&xor ($s3,&DWP(12,$key));
|
|
|
|
&mov ($key,$_out); # load out
|
|
&mov ($acc,$_inp); # load inp
|
|
|
|
&mov (&DWP(0,$key),$s0); # write output
|
|
&mov (&DWP(4,$key),$s1);
|
|
&mov (&DWP(8,$key),$s2);
|
|
&mov (&DWP(12,$key),$s3);
|
|
|
|
&mov ($s2,$_len); # load len
|
|
&mov ($_tmp,$acc); # save ivp
|
|
&lea ($acc,&DWP(16,$acc)); # advance inp
|
|
&mov ($_inp,$acc); # save inp
|
|
&lea ($key,&DWP(16,$key)); # advance out
|
|
&mov ($_out,$key); # save out
|
|
&sub ($s2,16); # decrease len
|
|
&mov ($_len,$s2); # save len
|
|
&jnz (&label("fast_dec_loop"));
|
|
&mov ($key,$_tmp); # load temp ivp
|
|
&mov ($acc,$_ivp); # load user ivp
|
|
&mov ($s0,&DWP(0,$key)); # load iv
|
|
&mov ($s1,&DWP(4,$key));
|
|
&mov ($s2,&DWP(8,$key));
|
|
&mov ($s3,&DWP(12,$key));
|
|
&mov (&DWP(0,$acc),$s0); # copy back to user
|
|
&mov (&DWP(4,$acc),$s1);
|
|
&mov (&DWP(8,$acc),$s2);
|
|
&mov (&DWP(12,$acc),$s3);
|
|
&jmp (&label("fast_dec_out"));
|
|
|
|
&set_label("fast_dec_in_place",16);
|
|
&set_label("fast_dec_in_place_loop");
|
|
&mov ($s0,&DWP(0,$acc)); # read input
|
|
&mov ($s1,&DWP(4,$acc));
|
|
&mov ($s2,&DWP(8,$acc));
|
|
&mov ($s3,&DWP(12,$acc));
|
|
|
|
&lea ($key,$ivec);
|
|
&mov (&DWP(0,$key),$s0); # copy to temp
|
|
&mov (&DWP(4,$key),$s1);
|
|
&mov (&DWP(8,$key),$s2);
|
|
&mov (&DWP(12,$key),$s3);
|
|
|
|
&mov ($key,$_key); # load key
|
|
&call ("_x86_AES_decrypt");
|
|
|
|
&mov ($key,$_ivp); # load ivp
|
|
&mov ($acc,$_out); # load out
|
|
&xor ($s0,&DWP(0,$key)); # xor iv
|
|
&xor ($s1,&DWP(4,$key));
|
|
&xor ($s2,&DWP(8,$key));
|
|
&xor ($s3,&DWP(12,$key));
|
|
|
|
&mov (&DWP(0,$acc),$s0); # write output
|
|
&mov (&DWP(4,$acc),$s1);
|
|
&mov (&DWP(8,$acc),$s2);
|
|
&mov (&DWP(12,$acc),$s3);
|
|
|
|
&lea ($acc,&DWP(16,$acc)); # advance out
|
|
&mov ($_out,$acc); # save out
|
|
|
|
&lea ($acc,$ivec);
|
|
&mov ($s0,&DWP(0,$acc)); # read temp
|
|
&mov ($s1,&DWP(4,$acc));
|
|
&mov ($s2,&DWP(8,$acc));
|
|
&mov ($s3,&DWP(12,$acc));
|
|
|
|
&mov (&DWP(0,$key),$s0); # copy iv
|
|
&mov (&DWP(4,$key),$s1);
|
|
&mov (&DWP(8,$key),$s2);
|
|
&mov (&DWP(12,$key),$s3);
|
|
|
|
&mov ($acc,$_inp); # load inp
|
|
&mov ($s2,$_len); # load len
|
|
&lea ($acc,&DWP(16,$acc)); # advance inp
|
|
&mov ($_inp,$acc); # save inp
|
|
&sub ($s2,16); # decrease len
|
|
&mov ($_len,$s2); # save len
|
|
&jnz (&label("fast_dec_in_place_loop"));
|
|
|
|
&set_label("fast_dec_out",4);
|
|
&cmp ($mark,0); # was the key schedule copied?
|
|
&mov ("edi",$_key);
|
|
&je (&label("skip_dzero"));
|
|
# zero copy of key schedule
|
|
&mov ("ecx",240/4);
|
|
&xor ("eax","eax");
|
|
&align (4);
|
|
&data_word(0xABF3F689); # rep stosd
|
|
&set_label("skip_dzero");
|
|
&mov ("esp",$_esp);
|
|
&popf ();
|
|
&function_end_A();
|
|
&pushf (); # kludge, never executed
|
|
|
|
#--------------------------- SLOW ROUTINE ---------------------------#
|
|
&set_label("slow_way",16);
|
|
|
|
&mov ($s0,&DWP(0,$s0)) if (!$x86only);# load OPENSSL_ia32cap
|
|
&mov ($key,&wparam(3)); # load key
|
|
|
|
# pre-allocate aligned stack frame...
|
|
&lea ($acc,&DWP(-80,"esp"));
|
|
&and ($acc,-64);
|
|
|
|
# ... and make sure it doesn't alias with $key modulo 1024
|
|
&lea ($s1,&DWP(-80-63,$key));
|
|
&sub ($s1,$acc);
|
|
&neg ($s1);
|
|
&and ($s1,0x3C0); # modulo 1024, but aligned to cache-line
|
|
&sub ($acc,$s1);
|
|
|
|
# pick S-box copy which can't overlap with stack frame or $key
|
|
&lea ($s1,&DWP(768,$acc));
|
|
&sub ($s1,$tbl);
|
|
&and ($s1,0x300);
|
|
&lea ($tbl,&DWP(2048+128,$tbl,$s1));
|
|
|
|
&lea ($s3,&wparam(0)); # pointer to parameter block
|
|
|
|
&exch ("esp",$acc);
|
|
&add ("esp",4); # reserve for return address!
|
|
&mov ($_tbl,$tbl); # save %ebp
|
|
&mov ($_esp,$acc); # save %esp
|
|
&mov ($_tmp,$s0); # save OPENSSL_ia32cap
|
|
|
|
&mov ($s0,&DWP(0,$s3)); # load inp
|
|
&mov ($s1,&DWP(4,$s3)); # load out
|
|
#&mov ($s2,&DWP(8,$s3)); # load len
|
|
#&mov ($key,&DWP(12,$s3)); # load key
|
|
&mov ($acc,&DWP(16,$s3)); # load ivp
|
|
&mov ($s3,&DWP(20,$s3)); # load enc flag
|
|
|
|
&mov ($_inp,$s0); # save copy of inp
|
|
&mov ($_out,$s1); # save copy of out
|
|
&mov ($_len,$s2); # save copy of len
|
|
&mov ($_key,$key); # save copy of key
|
|
&mov ($_ivp,$acc); # save copy of ivp
|
|
|
|
&mov ($key,$acc);
|
|
&mov ($acc,$s0);
|
|
|
|
&cmp ($s3,0);
|
|
&je (&label("slow_decrypt"));
|
|
|
|
#--------------------------- SLOW ENCRYPT ---------------------------#
|
|
&cmp ($s2,16);
|
|
&mov ($s3,$s1);
|
|
&jb (&label("slow_enc_tail"));
|
|
|
|
if (!$x86only) {
|
|
&bt ($_tmp,25); # check for SSE bit
|
|
&jnc (&label("slow_enc_x86"));
|
|
|
|
&movq ("mm0",&QWP(0,$key)); # load iv
|
|
&movq ("mm4",&QWP(8,$key));
|
|
|
|
&set_label("slow_enc_loop_sse",16);
|
|
&pxor ("mm0",&QWP(0,$acc)); # xor input data
|
|
&pxor ("mm4",&QWP(8,$acc));
|
|
|
|
&mov ($key,$_key);
|
|
&call ("_sse_AES_encrypt_compact");
|
|
|
|
&mov ($acc,$_inp); # load inp
|
|
&mov ($key,$_out); # load out
|
|
&mov ($s2,$_len); # load len
|
|
|
|
&movq (&QWP(0,$key),"mm0"); # save output data
|
|
&movq (&QWP(8,$key),"mm4");
|
|
|
|
&lea ($acc,&DWP(16,$acc)); # advance inp
|
|
&mov ($_inp,$acc); # save inp
|
|
&lea ($s3,&DWP(16,$key)); # advance out
|
|
&mov ($_out,$s3); # save out
|
|
&sub ($s2,16); # decrease len
|
|
&cmp ($s2,16);
|
|
&mov ($_len,$s2); # save len
|
|
&jae (&label("slow_enc_loop_sse"));
|
|
&test ($s2,15);
|
|
&jnz (&label("slow_enc_tail"));
|
|
&mov ($acc,$_ivp); # load ivp
|
|
&movq (&QWP(0,$acc),"mm0"); # save ivec
|
|
&movq (&QWP(8,$acc),"mm4");
|
|
&emms ();
|
|
&mov ("esp",$_esp);
|
|
&popf ();
|
|
&function_end_A();
|
|
&pushf (); # kludge, never executed
|
|
}
|
|
&set_label("slow_enc_x86",16);
|
|
&mov ($s0,&DWP(0,$key)); # load iv
|
|
&mov ($s1,&DWP(4,$key));
|
|
|
|
&set_label("slow_enc_loop_x86",4);
|
|
&mov ($s2,&DWP(8,$key));
|
|
&mov ($s3,&DWP(12,$key));
|
|
|
|
&xor ($s0,&DWP(0,$acc)); # xor input data
|
|
&xor ($s1,&DWP(4,$acc));
|
|
&xor ($s2,&DWP(8,$acc));
|
|
&xor ($s3,&DWP(12,$acc));
|
|
|
|
&mov ($key,$_key); # load key
|
|
&call ("_x86_AES_encrypt_compact");
|
|
|
|
&mov ($acc,$_inp); # load inp
|
|
&mov ($key,$_out); # load out
|
|
|
|
&mov (&DWP(0,$key),$s0); # save output data
|
|
&mov (&DWP(4,$key),$s1);
|
|
&mov (&DWP(8,$key),$s2);
|
|
&mov (&DWP(12,$key),$s3);
|
|
|
|
&mov ($s2,$_len); # load len
|
|
&lea ($acc,&DWP(16,$acc)); # advance inp
|
|
&mov ($_inp,$acc); # save inp
|
|
&lea ($s3,&DWP(16,$key)); # advance out
|
|
&mov ($_out,$s3); # save out
|
|
&sub ($s2,16); # decrease len
|
|
&cmp ($s2,16);
|
|
&mov ($_len,$s2); # save len
|
|
&jae (&label("slow_enc_loop_x86"));
|
|
&test ($s2,15);
|
|
&jnz (&label("slow_enc_tail"));
|
|
&mov ($acc,$_ivp); # load ivp
|
|
&mov ($s2,&DWP(8,$key)); # restore last dwords
|
|
&mov ($s3,&DWP(12,$key));
|
|
&mov (&DWP(0,$acc),$s0); # save ivec
|
|
&mov (&DWP(4,$acc),$s1);
|
|
&mov (&DWP(8,$acc),$s2);
|
|
&mov (&DWP(12,$acc),$s3);
|
|
|
|
&mov ("esp",$_esp);
|
|
&popf ();
|
|
&function_end_A();
|
|
&pushf (); # kludge, never executed
|
|
|
|
&set_label("slow_enc_tail",16);
|
|
&emms () if (!$x86only);
|
|
&mov ($key eq "edi"? $key:"",$s3); # load out to edi
|
|
&mov ($s1,16);
|
|
&sub ($s1,$s2);
|
|
&cmp ($key,$acc eq "esi"? $acc:""); # compare with inp
|
|
&je (&label("enc_in_place"));
|
|
&align (4);
|
|
&data_word(0xA4F3F689); # rep movsb # copy input
|
|
&jmp (&label("enc_skip_in_place"));
|
|
&set_label("enc_in_place");
|
|
&lea ($key,&DWP(0,$key,$s2));
|
|
&set_label("enc_skip_in_place");
|
|
&mov ($s2,$s1);
|
|
&xor ($s0,$s0);
|
|
&align (4);
|
|
&data_word(0xAAF3F689); # rep stosb # zero tail
|
|
|
|
&mov ($key,$_ivp); # restore ivp
|
|
&mov ($acc,$s3); # output as input
|
|
&mov ($s0,&DWP(0,$key));
|
|
&mov ($s1,&DWP(4,$key));
|
|
&mov ($_len,16); # len=16
|
|
&jmp (&label("slow_enc_loop_x86")); # one more spin...
|
|
|
|
#--------------------------- SLOW DECRYPT ---------------------------#
|
|
&set_label("slow_decrypt",16);
|
|
if (!$x86only) {
|
|
&bt ($_tmp,25); # check for SSE bit
|
|
&jnc (&label("slow_dec_loop_x86"));
|
|
|
|
&set_label("slow_dec_loop_sse",4);
|
|
&movq ("mm0",&QWP(0,$acc)); # read input
|
|
&movq ("mm4",&QWP(8,$acc));
|
|
|
|
&mov ($key,$_key);
|
|
&call ("_sse_AES_decrypt_compact");
|
|
|
|
&mov ($acc,$_inp); # load inp
|
|
&lea ($s0,$ivec);
|
|
&mov ($s1,$_out); # load out
|
|
&mov ($s2,$_len); # load len
|
|
&mov ($key,$_ivp); # load ivp
|
|
|
|
&movq ("mm1",&QWP(0,$acc)); # re-read input
|
|
&movq ("mm5",&QWP(8,$acc));
|
|
|
|
&pxor ("mm0",&QWP(0,$key)); # xor iv
|
|
&pxor ("mm4",&QWP(8,$key));
|
|
|
|
&movq (&QWP(0,$key),"mm1"); # copy input to iv
|
|
&movq (&QWP(8,$key),"mm5");
|
|
|
|
&sub ($s2,16); # decrease len
|
|
&jc (&label("slow_dec_partial_sse"));
|
|
|
|
&movq (&QWP(0,$s1),"mm0"); # write output
|
|
&movq (&QWP(8,$s1),"mm4");
|
|
|
|
&lea ($s1,&DWP(16,$s1)); # advance out
|
|
&mov ($_out,$s1); # save out
|
|
&lea ($acc,&DWP(16,$acc)); # advance inp
|
|
&mov ($_inp,$acc); # save inp
|
|
&mov ($_len,$s2); # save len
|
|
&jnz (&label("slow_dec_loop_sse"));
|
|
&emms ();
|
|
&mov ("esp",$_esp);
|
|
&popf ();
|
|
&function_end_A();
|
|
&pushf (); # kludge, never executed
|
|
|
|
&set_label("slow_dec_partial_sse",16);
|
|
&movq (&QWP(0,$s0),"mm0"); # save output to temp
|
|
&movq (&QWP(8,$s0),"mm4");
|
|
&emms ();
|
|
|
|
&add ($s2 eq "ecx" ? "ecx":"",16);
|
|
&mov ("edi",$s1); # out
|
|
&mov ("esi",$s0); # temp
|
|
&align (4);
|
|
&data_word(0xA4F3F689); # rep movsb # copy partial output
|
|
|
|
&mov ("esp",$_esp);
|
|
&popf ();
|
|
&function_end_A();
|
|
&pushf (); # kludge, never executed
|
|
}
|
|
&set_label("slow_dec_loop_x86",16);
|
|
&mov ($s0,&DWP(0,$acc)); # read input
|
|
&mov ($s1,&DWP(4,$acc));
|
|
&mov ($s2,&DWP(8,$acc));
|
|
&mov ($s3,&DWP(12,$acc));
|
|
|
|
&lea ($key,$ivec);
|
|
&mov (&DWP(0,$key),$s0); # copy to temp
|
|
&mov (&DWP(4,$key),$s1);
|
|
&mov (&DWP(8,$key),$s2);
|
|
&mov (&DWP(12,$key),$s3);
|
|
|
|
&mov ($key,$_key); # load key
|
|
&call ("_x86_AES_decrypt_compact");
|
|
|
|
&mov ($key,$_ivp); # load ivp
|
|
&mov ($acc,$_len); # load len
|
|
&xor ($s0,&DWP(0,$key)); # xor iv
|
|
&xor ($s1,&DWP(4,$key));
|
|
&xor ($s2,&DWP(8,$key));
|
|
&xor ($s3,&DWP(12,$key));
|
|
|
|
&sub ($acc,16);
|
|
&jc (&label("slow_dec_partial_x86"));
|
|
|
|
&mov ($_len,$acc); # save len
|
|
&mov ($acc,$_out); # load out
|
|
|
|
&mov (&DWP(0,$acc),$s0); # write output
|
|
&mov (&DWP(4,$acc),$s1);
|
|
&mov (&DWP(8,$acc),$s2);
|
|
&mov (&DWP(12,$acc),$s3);
|
|
|
|
&lea ($acc,&DWP(16,$acc)); # advance out
|
|
&mov ($_out,$acc); # save out
|
|
|
|
&lea ($acc,$ivec);
|
|
&mov ($s0,&DWP(0,$acc)); # read temp
|
|
&mov ($s1,&DWP(4,$acc));
|
|
&mov ($s2,&DWP(8,$acc));
|
|
&mov ($s3,&DWP(12,$acc));
|
|
|
|
&mov (&DWP(0,$key),$s0); # copy it to iv
|
|
&mov (&DWP(4,$key),$s1);
|
|
&mov (&DWP(8,$key),$s2);
|
|
&mov (&DWP(12,$key),$s3);
|
|
|
|
&mov ($acc,$_inp); # load inp
|
|
&lea ($acc,&DWP(16,$acc)); # advance inp
|
|
&mov ($_inp,$acc); # save inp
|
|
&jnz (&label("slow_dec_loop_x86"));
|
|
&mov ("esp",$_esp);
|
|
&popf ();
|
|
&function_end_A();
|
|
&pushf (); # kludge, never executed
|
|
|
|
&set_label("slow_dec_partial_x86",16);
|
|
&lea ($acc,$ivec);
|
|
&mov (&DWP(0,$acc),$s0); # save output to temp
|
|
&mov (&DWP(4,$acc),$s1);
|
|
&mov (&DWP(8,$acc),$s2);
|
|
&mov (&DWP(12,$acc),$s3);
|
|
|
|
&mov ($acc,$_inp);
|
|
&mov ($s0,&DWP(0,$acc)); # re-read input
|
|
&mov ($s1,&DWP(4,$acc));
|
|
&mov ($s2,&DWP(8,$acc));
|
|
&mov ($s3,&DWP(12,$acc));
|
|
|
|
&mov (&DWP(0,$key),$s0); # copy it to iv
|
|
&mov (&DWP(4,$key),$s1);
|
|
&mov (&DWP(8,$key),$s2);
|
|
&mov (&DWP(12,$key),$s3);
|
|
|
|
&mov ("ecx",$_len);
|
|
&mov ("edi",$_out);
|
|
&lea ("esi",$ivec);
|
|
&align (4);
|
|
&data_word(0xA4F3F689); # rep movsb # copy partial output
|
|
|
|
&mov ("esp",$_esp);
|
|
&popf ();
|
|
&function_end("asm_AES_cbc_encrypt");
|
|
}
|
|
|
|
#------------------------------------------------------------------#
|
|
|
|
sub enckey()
|
|
{
|
|
&movz ("esi",&LB("edx")); # rk[i]>>0
|
|
&movz ("ebx",&BP(-128,$tbl,"esi",1));
|
|
&movz ("esi",&HB("edx")); # rk[i]>>8
|
|
&shl ("ebx",24);
|
|
&xor ("eax","ebx");
|
|
|
|
&movz ("ebx",&BP(-128,$tbl,"esi",1));
|
|
&shr ("edx",16);
|
|
&movz ("esi",&LB("edx")); # rk[i]>>16
|
|
&xor ("eax","ebx");
|
|
|
|
&movz ("ebx",&BP(-128,$tbl,"esi",1));
|
|
&movz ("esi",&HB("edx")); # rk[i]>>24
|
|
&shl ("ebx",8);
|
|
&xor ("eax","ebx");
|
|
|
|
&movz ("ebx",&BP(-128,$tbl,"esi",1));
|
|
&shl ("ebx",16);
|
|
&xor ("eax","ebx");
|
|
|
|
&xor ("eax",&DWP(1024-128,$tbl,"ecx",4)); # rcon
|
|
}
|
|
|
|
&function_begin("_x86_AES_set_encrypt_key");
|
|
&mov ("esi",&wparam(1)); # user supplied key
|
|
&mov ("edi",&wparam(3)); # private key schedule
|
|
|
|
&test ("esi",-1);
|
|
&jz (&label("badpointer"));
|
|
&test ("edi",-1);
|
|
&jz (&label("badpointer"));
|
|
|
|
&call (&label("pic_point"));
|
|
&set_label("pic_point");
|
|
&blindpop($tbl);
|
|
&lea ($tbl,&DWP(&label("AES_Te")."-".&label("pic_point"),$tbl));
|
|
&lea ($tbl,&DWP(2048+128,$tbl));
|
|
|
|
# prefetch Te4
|
|
&mov ("eax",&DWP(0-128,$tbl));
|
|
&mov ("ebx",&DWP(32-128,$tbl));
|
|
&mov ("ecx",&DWP(64-128,$tbl));
|
|
&mov ("edx",&DWP(96-128,$tbl));
|
|
&mov ("eax",&DWP(128-128,$tbl));
|
|
&mov ("ebx",&DWP(160-128,$tbl));
|
|
&mov ("ecx",&DWP(192-128,$tbl));
|
|
&mov ("edx",&DWP(224-128,$tbl));
|
|
|
|
&mov ("ecx",&wparam(2)); # number of bits in key
|
|
&cmp ("ecx",128);
|
|
&je (&label("10rounds"));
|
|
&cmp ("ecx",192);
|
|
&je (&label("12rounds"));
|
|
&cmp ("ecx",256);
|
|
&je (&label("14rounds"));
|
|
&mov ("eax",-2); # invalid number of bits
|
|
&jmp (&label("exit"));
|
|
|
|
&set_label("10rounds");
|
|
&mov ("eax",&DWP(0,"esi")); # copy first 4 dwords
|
|
&mov ("ebx",&DWP(4,"esi"));
|
|
&mov ("ecx",&DWP(8,"esi"));
|
|
&mov ("edx",&DWP(12,"esi"));
|
|
&mov (&DWP(0,"edi"),"eax");
|
|
&mov (&DWP(4,"edi"),"ebx");
|
|
&mov (&DWP(8,"edi"),"ecx");
|
|
&mov (&DWP(12,"edi"),"edx");
|
|
|
|
&xor ("ecx","ecx");
|
|
&jmp (&label("10shortcut"));
|
|
|
|
&align (4);
|
|
&set_label("10loop");
|
|
&mov ("eax",&DWP(0,"edi")); # rk[0]
|
|
&mov ("edx",&DWP(12,"edi")); # rk[3]
|
|
&set_label("10shortcut");
|
|
&enckey ();
|
|
|
|
&mov (&DWP(16,"edi"),"eax"); # rk[4]
|
|
&xor ("eax",&DWP(4,"edi"));
|
|
&mov (&DWP(20,"edi"),"eax"); # rk[5]
|
|
&xor ("eax",&DWP(8,"edi"));
|
|
&mov (&DWP(24,"edi"),"eax"); # rk[6]
|
|
&xor ("eax",&DWP(12,"edi"));
|
|
&mov (&DWP(28,"edi"),"eax"); # rk[7]
|
|
&inc ("ecx");
|
|
&add ("edi",16);
|
|
&cmp ("ecx",10);
|
|
&jl (&label("10loop"));
|
|
|
|
&mov (&DWP(80,"edi"),10); # setup number of rounds
|
|
&xor ("eax","eax");
|
|
&jmp (&label("exit"));
|
|
|
|
&set_label("12rounds");
|
|
&mov ("eax",&DWP(0,"esi")); # copy first 6 dwords
|
|
&mov ("ebx",&DWP(4,"esi"));
|
|
&mov ("ecx",&DWP(8,"esi"));
|
|
&mov ("edx",&DWP(12,"esi"));
|
|
&mov (&DWP(0,"edi"),"eax");
|
|
&mov (&DWP(4,"edi"),"ebx");
|
|
&mov (&DWP(8,"edi"),"ecx");
|
|
&mov (&DWP(12,"edi"),"edx");
|
|
&mov ("ecx",&DWP(16,"esi"));
|
|
&mov ("edx",&DWP(20,"esi"));
|
|
&mov (&DWP(16,"edi"),"ecx");
|
|
&mov (&DWP(20,"edi"),"edx");
|
|
|
|
&xor ("ecx","ecx");
|
|
&jmp (&label("12shortcut"));
|
|
|
|
&align (4);
|
|
&set_label("12loop");
|
|
&mov ("eax",&DWP(0,"edi")); # rk[0]
|
|
&mov ("edx",&DWP(20,"edi")); # rk[5]
|
|
&set_label("12shortcut");
|
|
&enckey ();
|
|
|
|
&mov (&DWP(24,"edi"),"eax"); # rk[6]
|
|
&xor ("eax",&DWP(4,"edi"));
|
|
&mov (&DWP(28,"edi"),"eax"); # rk[7]
|
|
&xor ("eax",&DWP(8,"edi"));
|
|
&mov (&DWP(32,"edi"),"eax"); # rk[8]
|
|
&xor ("eax",&DWP(12,"edi"));
|
|
&mov (&DWP(36,"edi"),"eax"); # rk[9]
|
|
|
|
&cmp ("ecx",7);
|
|
&je (&label("12break"));
|
|
&inc ("ecx");
|
|
|
|
&xor ("eax",&DWP(16,"edi"));
|
|
&mov (&DWP(40,"edi"),"eax"); # rk[10]
|
|
&xor ("eax",&DWP(20,"edi"));
|
|
&mov (&DWP(44,"edi"),"eax"); # rk[11]
|
|
|
|
&add ("edi",24);
|
|
&jmp (&label("12loop"));
|
|
|
|
&set_label("12break");
|
|
&mov (&DWP(72,"edi"),12); # setup number of rounds
|
|
&xor ("eax","eax");
|
|
&jmp (&label("exit"));
|
|
|
|
&set_label("14rounds");
|
|
&mov ("eax",&DWP(0,"esi")); # copy first 8 dwords
|
|
&mov ("ebx",&DWP(4,"esi"));
|
|
&mov ("ecx",&DWP(8,"esi"));
|
|
&mov ("edx",&DWP(12,"esi"));
|
|
&mov (&DWP(0,"edi"),"eax");
|
|
&mov (&DWP(4,"edi"),"ebx");
|
|
&mov (&DWP(8,"edi"),"ecx");
|
|
&mov (&DWP(12,"edi"),"edx");
|
|
&mov ("eax",&DWP(16,"esi"));
|
|
&mov ("ebx",&DWP(20,"esi"));
|
|
&mov ("ecx",&DWP(24,"esi"));
|
|
&mov ("edx",&DWP(28,"esi"));
|
|
&mov (&DWP(16,"edi"),"eax");
|
|
&mov (&DWP(20,"edi"),"ebx");
|
|
&mov (&DWP(24,"edi"),"ecx");
|
|
&mov (&DWP(28,"edi"),"edx");
|
|
|
|
&xor ("ecx","ecx");
|
|
&jmp (&label("14shortcut"));
|
|
|
|
&align (4);
|
|
&set_label("14loop");
|
|
&mov ("edx",&DWP(28,"edi")); # rk[7]
|
|
&set_label("14shortcut");
|
|
&mov ("eax",&DWP(0,"edi")); # rk[0]
|
|
|
|
&enckey ();
|
|
|
|
&mov (&DWP(32,"edi"),"eax"); # rk[8]
|
|
&xor ("eax",&DWP(4,"edi"));
|
|
&mov (&DWP(36,"edi"),"eax"); # rk[9]
|
|
&xor ("eax",&DWP(8,"edi"));
|
|
&mov (&DWP(40,"edi"),"eax"); # rk[10]
|
|
&xor ("eax",&DWP(12,"edi"));
|
|
&mov (&DWP(44,"edi"),"eax"); # rk[11]
|
|
|
|
&cmp ("ecx",6);
|
|
&je (&label("14break"));
|
|
&inc ("ecx");
|
|
|
|
&mov ("edx","eax");
|
|
&mov ("eax",&DWP(16,"edi")); # rk[4]
|
|
&movz ("esi",&LB("edx")); # rk[11]>>0
|
|
&movz ("ebx",&BP(-128,$tbl,"esi",1));
|
|
&movz ("esi",&HB("edx")); # rk[11]>>8
|
|
&xor ("eax","ebx");
|
|
|
|
&movz ("ebx",&BP(-128,$tbl,"esi",1));
|
|
&shr ("edx",16);
|
|
&shl ("ebx",8);
|
|
&movz ("esi",&LB("edx")); # rk[11]>>16
|
|
&xor ("eax","ebx");
|
|
|
|
&movz ("ebx",&BP(-128,$tbl,"esi",1));
|
|
&movz ("esi",&HB("edx")); # rk[11]>>24
|
|
&shl ("ebx",16);
|
|
&xor ("eax","ebx");
|
|
|
|
&movz ("ebx",&BP(-128,$tbl,"esi",1));
|
|
&shl ("ebx",24);
|
|
&xor ("eax","ebx");
|
|
|
|
&mov (&DWP(48,"edi"),"eax"); # rk[12]
|
|
&xor ("eax",&DWP(20,"edi"));
|
|
&mov (&DWP(52,"edi"),"eax"); # rk[13]
|
|
&xor ("eax",&DWP(24,"edi"));
|
|
&mov (&DWP(56,"edi"),"eax"); # rk[14]
|
|
&xor ("eax",&DWP(28,"edi"));
|
|
&mov (&DWP(60,"edi"),"eax"); # rk[15]
|
|
|
|
&add ("edi",32);
|
|
&jmp (&label("14loop"));
|
|
|
|
&set_label("14break");
|
|
&mov (&DWP(48,"edi"),14); # setup number of rounds
|
|
&xor ("eax","eax");
|
|
&jmp (&label("exit"));
|
|
|
|
&set_label("badpointer");
|
|
&mov ("eax",-1);
|
|
&set_label("exit");
|
|
&function_end("_x86_AES_set_encrypt_key");
|
|
|
|
# int asm_AES_set_encrypt_key(const unsigned char *userKey, const int bits,
|
|
# AES_KEY *key)
|
|
&function_begin_B("asm_AES_set_encrypt_key");
|
|
&call ("_x86_AES_set_encrypt_key");
|
|
&ret ();
|
|
&function_end_B("asm_AES_set_encrypt_key");
|
|
|
|
sub deckey()
|
|
{ my ($i,$key,$tp1,$tp2,$tp4,$tp8) = @_;
|
|
my $tmp = $tbl;
|
|
|
|
&mov ($tmp,0x80808080);
|
|
&and ($tmp,$tp1);
|
|
&lea ($tp2,&DWP(0,$tp1,$tp1));
|
|
&mov ($acc,$tmp);
|
|
&shr ($tmp,7);
|
|
&sub ($acc,$tmp);
|
|
&and ($tp2,0xfefefefe);
|
|
&and ($acc,0x1b1b1b1b);
|
|
&xor ($tp2,$acc);
|
|
&mov ($tmp,0x80808080);
|
|
|
|
&and ($tmp,$tp2);
|
|
&lea ($tp4,&DWP(0,$tp2,$tp2));
|
|
&mov ($acc,$tmp);
|
|
&shr ($tmp,7);
|
|
&sub ($acc,$tmp);
|
|
&and ($tp4,0xfefefefe);
|
|
&and ($acc,0x1b1b1b1b);
|
|
&xor ($tp2,$tp1); # tp2^tp1
|
|
&xor ($tp4,$acc);
|
|
&mov ($tmp,0x80808080);
|
|
|
|
&and ($tmp,$tp4);
|
|
&lea ($tp8,&DWP(0,$tp4,$tp4));
|
|
&mov ($acc,$tmp);
|
|
&shr ($tmp,7);
|
|
&xor ($tp4,$tp1); # tp4^tp1
|
|
&sub ($acc,$tmp);
|
|
&and ($tp8,0xfefefefe);
|
|
&and ($acc,0x1b1b1b1b);
|
|
&rotl ($tp1,8); # = ROTATE(tp1,8)
|
|
&xor ($tp8,$acc);
|
|
|
|
&mov ($tmp,&DWP(4*($i+1),$key)); # modulo-scheduled load
|
|
|
|
&xor ($tp1,$tp2);
|
|
&xor ($tp2,$tp8);
|
|
&xor ($tp1,$tp4);
|
|
&rotl ($tp2,24);
|
|
&xor ($tp4,$tp8);
|
|
&xor ($tp1,$tp8); # ^= tp8^(tp4^tp1)^(tp2^tp1)
|
|
&rotl ($tp4,16);
|
|
&xor ($tp1,$tp2); # ^= ROTATE(tp8^tp2^tp1,24)
|
|
&rotl ($tp8,8);
|
|
&xor ($tp1,$tp4); # ^= ROTATE(tp8^tp4^tp1,16)
|
|
&mov ($tp2,$tmp);
|
|
&xor ($tp1,$tp8); # ^= ROTATE(tp8,8)
|
|
|
|
&mov (&DWP(4*$i,$key),$tp1);
|
|
}
|
|
|
|
# int asm_AES_set_decrypt_key(const unsigned char *userKey, const int bits,
|
|
# AES_KEY *key)
|
|
&function_begin_B("asm_AES_set_decrypt_key");
|
|
&call ("_x86_AES_set_encrypt_key");
|
|
&cmp ("eax",0);
|
|
&je (&label("proceed"));
|
|
&ret ();
|
|
|
|
&set_label("proceed");
|
|
&push ("ebp");
|
|
&push ("ebx");
|
|
&push ("esi");
|
|
&push ("edi");
|
|
|
|
&mov ("esi",&wparam(2));
|
|
&mov ("ecx",&DWP(240,"esi")); # pull number of rounds
|
|
&lea ("ecx",&DWP(0,"","ecx",4));
|
|
&lea ("edi",&DWP(0,"esi","ecx",4)); # pointer to last chunk
|
|
|
|
&set_label("invert",4); # invert order of chunks
|
|
&mov ("eax",&DWP(0,"esi"));
|
|
&mov ("ebx",&DWP(4,"esi"));
|
|
&mov ("ecx",&DWP(0,"edi"));
|
|
&mov ("edx",&DWP(4,"edi"));
|
|
&mov (&DWP(0,"edi"),"eax");
|
|
&mov (&DWP(4,"edi"),"ebx");
|
|
&mov (&DWP(0,"esi"),"ecx");
|
|
&mov (&DWP(4,"esi"),"edx");
|
|
&mov ("eax",&DWP(8,"esi"));
|
|
&mov ("ebx",&DWP(12,"esi"));
|
|
&mov ("ecx",&DWP(8,"edi"));
|
|
&mov ("edx",&DWP(12,"edi"));
|
|
&mov (&DWP(8,"edi"),"eax");
|
|
&mov (&DWP(12,"edi"),"ebx");
|
|
&mov (&DWP(8,"esi"),"ecx");
|
|
&mov (&DWP(12,"esi"),"edx");
|
|
&add ("esi",16);
|
|
&sub ("edi",16);
|
|
&cmp ("esi","edi");
|
|
&jne (&label("invert"));
|
|
|
|
&mov ($key,&wparam(2));
|
|
&mov ($acc,&DWP(240,$key)); # pull number of rounds
|
|
&lea ($acc,&DWP(-2,$acc,$acc));
|
|
&lea ($acc,&DWP(0,$key,$acc,8));
|
|
&mov (&wparam(2),$acc);
|
|
|
|
&mov ($s0,&DWP(16,$key)); # modulo-scheduled load
|
|
&set_label("permute",4); # permute the key schedule
|
|
&add ($key,16);
|
|
&deckey (0,$key,$s0,$s1,$s2,$s3);
|
|
&deckey (1,$key,$s1,$s2,$s3,$s0);
|
|
&deckey (2,$key,$s2,$s3,$s0,$s1);
|
|
&deckey (3,$key,$s3,$s0,$s1,$s2);
|
|
&cmp ($key,&wparam(2));
|
|
&jb (&label("permute"));
|
|
|
|
&xor ("eax","eax"); # return success
|
|
&function_end("asm_AES_set_decrypt_key");
|
|
&asciz("AES for x86, CRYPTOGAMS by <appro\@openssl.org>");
|
|
|
|
&asm_finish();
|
|
|
|
close STDOUT;
|