go-sike/p434/fp.go

193 righe
3.8 KiB
Go

package sike
import (
"math/bits"
)
// Fp implementation
// Compute z = x + y (mod 2*p).
func fpAddRdc(z, x, y *Fp) {
var carry uint64
// z=x+y % p503
for i := 0; i < FP_WORDS; i++ {
z[i], carry = bits.Add64(x[i], y[i], carry)
}
// z = z - pX2
carry = 0
for i := 0; i < FP_WORDS; i++ {
z[i], carry = bits.Sub64(z[i], pX2[i], carry)
}
// if z<0 add pX2 back
mask := uint64(0 - carry)
carry = 0
for i := 0; i < FP_WORDS; i++ {
z[i], carry = bits.Add64(z[i], pX2[i]&mask, carry)
}
}
// Compute z = x - y (mod 2*p).
func fpSubRdc(z, x, y *Fp) {
var borrow uint64
// z = z - pX2
for i := 0; i < FP_WORDS; i++ {
z[i], borrow = bits.Sub64(x[i], y[i], borrow)
}
// if z<0 add pX2 back
mask := uint64(0 - borrow)
borrow = 0
for i := 0; i < FP_WORDS; i++ {
z[i], borrow = bits.Add64(z[i], pX2[i]&mask, borrow)
}
}
// Reduce a field element in [0, 2*p) to one in [0,p).
func fpRdcP(x *Fp) {
var borrow, mask uint64
for i := 0; i < FP_WORDS; i++ {
x[i], borrow = bits.Sub64(x[i], p[i], borrow)
}
// Sets all bits if borrow = 1
mask = 0 - borrow
borrow = 0
for i := 0; i < FP_WORDS; i++ {
x[i], borrow = bits.Add64(x[i], p[i]&mask, borrow)
}
}
// Implementation doesn't actually depend on a prime field.
func fpSwapCond(x, y *Fp, mask uint8) {
if mask != 0 {
var tmp Fp
copy(tmp[:], y[:])
copy(y[:], x[:])
copy(x[:], tmp[:])
}
}
// Compute z = x * y.
func fpMul(z *FpX2, x, y *Fp) {
var carry, t, u, v uint64
var hi, lo uint64
for i := uint64(0); i < FP_WORDS; i++ {
for j := uint64(0); j <= i; j++ {
hi, lo = bits.Mul64(x[j], y[i-j])
v, carry = bits.Add64(lo, v, 0)
u, carry = bits.Add64(hi, u, carry)
t += carry
}
z[i] = v
v = u
u = t
t = 0
}
for i := FP_WORDS; i < (2*FP_WORDS)-1; i++ {
for j := i - FP_WORDS + 1; j < FP_WORDS; j++ {
hi, lo = bits.Mul64(x[j], y[i-j])
v, carry = bits.Add64(lo, v, 0)
u, carry = bits.Add64(hi, u, carry)
t += carry
}
z[i] = v
v = u
u = t
t = 0
}
z[2*FP_WORDS-1] = v
}
// Perform Montgomery reduction: set z = x R^{-1} (mod 2*p)
// with R=2^512. Destroys the input value.
func fpMontRdc(z *Fp, x *FpX2) {
var carry, t, u, v uint64
var hi, lo uint64
var count int
count = 3 // number of 0 digits in the least significat part of p503 + 1
for i := 0; i < FP_WORDS; i++ {
for j := 0; j < i; j++ {
if j < (i - count + 1) {
hi, lo = bits.Mul64(z[j], p1[i-j])
v, carry = bits.Add64(lo, v, 0)
u, carry = bits.Add64(hi, u, carry)
t += carry
}
}
v, carry = bits.Add64(v, x[i], 0)
u, carry = bits.Add64(u, 0, carry)
t += carry
z[i] = v
v = u
u = t
t = 0
}
for i := FP_WORDS; i < 2*FP_WORDS-1; i++ {
if count > 0 {
count--
}
for j := i - FP_WORDS + 1; j < FP_WORDS; j++ {
if j < (FP_WORDS - count) {
hi, lo = bits.Mul64(z[j], p1[i-j])
v, carry = bits.Add64(lo, v, 0)
u, carry = bits.Add64(hi, u, carry)
t += carry
}
}
v, carry = bits.Add64(v, x[i], 0)
u, carry = bits.Add64(u, 0, carry)
t += carry
z[i-FP_WORDS] = v
v = u
u = t
t = 0
}
v, carry = bits.Add64(v, x[2*FP_WORDS-1], 0)
z[FP_WORDS-1] = v
}
// Compute z = x + y, without reducing mod p.
func fp2Add(z, x, y *FpX2) {
var carry uint64
for i := 0; i < 2*FP_WORDS; i++ {
z[i], carry = bits.Add64(x[i], y[i], carry)
}
}
// Compute z = x - y, without reducing mod p.
func fp2Sub(z, x, y *FpX2) {
var borrow, mask uint64
for i := 0; i < 2*FP_WORDS; i++ {
z[i], borrow = bits.Sub64(x[i], y[i], borrow)
}
// Sets all bits if borrow = 1
mask = 0 - borrow
borrow = 0
for i := FP_WORDS; i < 2*FP_WORDS; i++ {
z[i], borrow = bits.Add64(z[i], p[i-FP_WORDS]&mask, borrow)
}
}
// Montgomery multiplication. Input values must be already
// in Montgomery domain.
func fpMulRdc(dest, lhs, rhs *Fp) {
a := lhs // = a*R
b := rhs // = b*R
var ab FpX2
fpMul(&ab, a, b) // = a*b*R*R
fpMontRdc(dest, &ab) // = a*b*R mod p
}