pqc/crypto_sign/falcon-1024/clean/pqclean.c

382 lines
10 KiB
C
Raw Normal View History

/*
* Wrapper for implementing the PQClean API.
*/
#include <stddef.h>
#include <string.h>
#include "api.h"
#include "inner.h"
#define NONCELEN 40
#include "randombytes.h"
/*
* Encoding formats (nnnn = log of degree, 9 for Falcon-512, 10 for Falcon-1024)
*
* private key:
* header byte: 0101nnnn
* private f (6 or 5 bits by element, depending on degree)
* private g (6 or 5 bits by element, depending on degree)
* private F (8 bits by element)
*
* public key:
* header byte: 0000nnnn
* public h (14 bits by element)
*
* signature:
* header byte: 0011nnnn
* nonce 40 bytes
* value (12 bits by element)
*
* message + signature:
* signature length (2 bytes, big-endian)
* nonce 40 bytes
* message
* header byte: 0010nnnn
* value (12 bits by element)
* (signature length is 1+len(value), not counting the nonce)
*/
/* see api.h */
int
PQCLEAN_FALCON1024_CLEAN_crypto_sign_keypair(
uint8_t *pk, uint8_t *sk) {
union {
uint8_t b[FALCON_KEYGEN_TEMP_10];
uint64_t dummy_u64;
fpr dummy_fpr;
} tmp;
int8_t f[1024], g[1024], F[1024];
uint16_t h[1024];
unsigned char seed[48];
shake256_context rng;
size_t u, v;
/*
* Generate key pair.
*/
randombytes(seed, sizeof seed);
shake256_init(&rng);
shake256_inject(&rng, seed, sizeof seed);
shake256_flip(&rng);
PQCLEAN_FALCON1024_CLEAN_keygen(&rng, f, g, F, NULL, h, 10, tmp.b);
/*
* Encode private key.
*/
sk[0] = 0x50 + 10;
u = 1;
v = PQCLEAN_FALCON1024_CLEAN_trim_i8_encode(
sk + u, PQCLEAN_FALCON1024_CLEAN_CRYPTO_SECRETKEYBYTES - u,
f, 10, PQCLEAN_FALCON1024_CLEAN_max_fg_bits[10]);
if (v == 0) {
return -1;
}
u += v;
v = PQCLEAN_FALCON1024_CLEAN_trim_i8_encode(
sk + u, PQCLEAN_FALCON1024_CLEAN_CRYPTO_SECRETKEYBYTES - u,
g, 10, PQCLEAN_FALCON1024_CLEAN_max_fg_bits[10]);
if (v == 0) {
return -1;
}
u += v;
v = PQCLEAN_FALCON1024_CLEAN_trim_i8_encode(
sk + u, PQCLEAN_FALCON1024_CLEAN_CRYPTO_SECRETKEYBYTES - u,
F, 10, PQCLEAN_FALCON1024_CLEAN_max_FG_bits[10]);
if (v == 0) {
return -1;
}
u += v;
if (u != PQCLEAN_FALCON1024_CLEAN_CRYPTO_SECRETKEYBYTES) {
return -1;
}
/*
* Encode public key.
*/
pk[0] = 0x00 + 10;
v = PQCLEAN_FALCON1024_CLEAN_modq_encode(
pk + 1, PQCLEAN_FALCON1024_CLEAN_CRYPTO_PUBLICKEYBYTES - 1,
h, 10);
if (v != PQCLEAN_FALCON1024_CLEAN_CRYPTO_PUBLICKEYBYTES - 1) {
return -1;
}
return 0;
}
/*
* Compute the signature. nonce[] receives the nonce and must have length
* NONCELEN bytes. sigbuf[] receives the signature value (without nonce
* or header byte), with *sigbuflen providing the maximum value length and
* receiving the actual value length.
*
* If a signature could be computed but not encoded because it would
* exceed the output buffer size, then a new signature is computed. If
* the provided buffer size is too low, this could loop indefinitely, so
* the caller must provide a size that can accommodate signatures with a
* large enough probability.
*
* Return value: 0 on success, -1 on error.
*/
static int
do_sign(uint8_t *nonce, uint8_t *sigbuf, size_t *sigbuflen,
const uint8_t *m, size_t mlen, const uint8_t *sk) {
union {
uint8_t b[72 * 1024];
uint64_t dummy_u64;
fpr dummy_fpr;
} tmp;
int8_t f[1024], g[1024], F[1024], G[1024];
union {
int16_t sig[1024];
uint16_t hm[1024];
} r;
unsigned char seed[48];
shake256_context sc;
size_t u, v;
/*
* Decode the private key.
*/
if (sk[0] != 0x50 + 10) {
return -1;
}
u = 1;
v = PQCLEAN_FALCON1024_CLEAN_trim_i8_decode(
f, 10, PQCLEAN_FALCON1024_CLEAN_max_fg_bits[10],
sk + u, PQCLEAN_FALCON1024_CLEAN_CRYPTO_SECRETKEYBYTES - u);
if (v == 0) {
return -1;
}
u += v;
v = PQCLEAN_FALCON1024_CLEAN_trim_i8_decode(
g, 10, PQCLEAN_FALCON1024_CLEAN_max_fg_bits[10],
sk + u, PQCLEAN_FALCON1024_CLEAN_CRYPTO_SECRETKEYBYTES - u);
if (v == 0) {
return -1;
}
u += v;
v = PQCLEAN_FALCON1024_CLEAN_trim_i8_decode(
F, 10, PQCLEAN_FALCON1024_CLEAN_max_FG_bits[10],
sk + u, PQCLEAN_FALCON1024_CLEAN_CRYPTO_SECRETKEYBYTES - u);
if (v == 0) {
return -1;
}
u += v;
if (u != PQCLEAN_FALCON1024_CLEAN_CRYPTO_SECRETKEYBYTES) {
return -1;
}
if (!PQCLEAN_FALCON1024_CLEAN_complete_private(G, f, g, F, 10, tmp.b)) {
return -1;
}
/*
* Create a random nonce (40 bytes).
*/
randombytes(nonce, NONCELEN);
/*
* Hash message nonce + message into a vector.
*/
shake256_init(&sc);
shake256_inject(&sc, nonce, NONCELEN);
shake256_inject(&sc, m, mlen);
shake256_flip(&sc);
PQCLEAN_FALCON1024_CLEAN_hash_to_point(&sc, r.hm, 10, tmp.b);
/*
* Initialize a RNG.
*/
randombytes(seed, sizeof seed);
shake256_init(&sc);
shake256_inject(&sc, seed, sizeof seed);
shake256_flip(&sc);
/*
* Compute and return the signature. This loops until a signature
* value is found that fits in the provided buffer.
*/
for (;;) {
PQCLEAN_FALCON1024_CLEAN_sign_dyn(r.sig, &sc, f, g, F, G, r.hm, 10, tmp.b);
v = PQCLEAN_FALCON1024_CLEAN_comp_encode(sigbuf, *sigbuflen, r.sig, 10);
if (v != 0) {
*sigbuflen = v;
return 0;
}
}
}
/*
* Verify a sigature. The nonce has size NONCELEN bytes. sigbuf[]
* (of size sigbuflen) contains the signature value, not including the
* header byte or nonce. Return value is 0 on success, -1 on error.
*/
static int
do_verify(
const uint8_t *nonce, const uint8_t *sigbuf, size_t sigbuflen,
const uint8_t *m, size_t mlen, const uint8_t *pk) {
union {
uint8_t b[2 * 1024];
uint64_t dummy_u64;
fpr dummy_fpr;
} tmp;
uint16_t h[1024], hm[1024];
int16_t sig[1024];
shake256_context sc;
/*
* Decode public key.
*/
if (pk[0] != 0x00 + 10) {
return -1;
}
if (PQCLEAN_FALCON1024_CLEAN_modq_decode(h, 10,
pk + 1, PQCLEAN_FALCON1024_CLEAN_CRYPTO_PUBLICKEYBYTES - 1)
!= PQCLEAN_FALCON1024_CLEAN_CRYPTO_PUBLICKEYBYTES - 1) {
return -1;
}
PQCLEAN_FALCON1024_CLEAN_to_ntt_monty(h, 10);
/*
* Decode signature.
*/
if (sigbuflen == 0) {
return -1;
}
if (PQCLEAN_FALCON1024_CLEAN_comp_decode(sig, 10, sigbuf, sigbuflen) != sigbuflen) {
return -1;
}
/*
* Hash nonce + message into a vector.
*/
shake256_init(&sc);
shake256_inject(&sc, nonce, NONCELEN);
shake256_inject(&sc, m, mlen);
shake256_flip(&sc);
PQCLEAN_FALCON1024_CLEAN_hash_to_point(&sc, hm, 10, tmp.b);
/*
* Verify signature.
*/
if (!PQCLEAN_FALCON1024_CLEAN_verify_raw(hm, sig, h, 10, tmp.b)) {
return -1;
}
return 0;
}
/* see api.h */
int
PQCLEAN_FALCON1024_CLEAN_crypto_sign_signature(
uint8_t *sig, size_t *siglen,
const uint8_t *m, size_t mlen, const uint8_t *sk) {
/*
* The PQCLEAN_FALCON1024_CLEAN_CRYPTO_BYTES constant is used for
* the signed message object (as produced by crypto_sign())
* and includes a two-byte length value, so we take care here
* to only generate signatures that are two bytes shorter than
* the maximum. This is done to ensure that crypto_sign()
* and crypto_sign_signature() produce the exact same signature
* value, if used on the same message, with the same private key,
* and using the same output from randombytes() (this is for
* reproducibility of tests).
*/
size_t vlen;
vlen = PQCLEAN_FALCON1024_CLEAN_CRYPTO_BYTES - NONCELEN - 3;
if (do_sign(sig + 1, sig + 1 + NONCELEN, &vlen, m, mlen, sk) < 0) {
return -1;
}
sig[0] = 0x30 + 10;
*siglen = 1 + NONCELEN + vlen;
return 0;
}
/* see api.h */
int
PQCLEAN_FALCON1024_CLEAN_crypto_sign_verify(
const uint8_t *sig, size_t siglen,
const uint8_t *m, size_t mlen, const uint8_t *pk) {
if (siglen < 1 + NONCELEN) {
return -1;
}
if (sig[0] != 0x30 + 10) {
return -1;
}
return do_verify(sig + 1,
sig + 1 + NONCELEN, siglen - 1 - NONCELEN, m, mlen, pk);
}
/* see api.h */
int
PQCLEAN_FALCON1024_CLEAN_crypto_sign(
uint8_t *sm, size_t *smlen,
const uint8_t *m, size_t mlen, const uint8_t *sk) {
uint8_t *pm, *sigbuf;
size_t sigbuflen;
/*
* Move the message to its final location; this is a memmove() so
* it handles overlaps properly.
*/
memmove(sm + 2 + NONCELEN, m, mlen);
pm = sm + 2 + NONCELEN;
sigbuf = pm + 1 + mlen;
sigbuflen = PQCLEAN_FALCON1024_CLEAN_CRYPTO_BYTES - NONCELEN - 3;
if (do_sign(sm + 2, sigbuf, &sigbuflen, pm, mlen, sk) < 0) {
return -1;
}
pm[mlen] = 0x20 + 10;
sigbuflen ++;
sm[0] = (uint8_t)(sigbuflen >> 8);
sm[1] = (uint8_t)sigbuflen;
*smlen = mlen + 2 + NONCELEN + sigbuflen;
return 0;
}
/* see api.h */
int
PQCLEAN_FALCON1024_CLEAN_crypto_sign_open(
uint8_t *m, size_t *mlen,
const uint8_t *sm, size_t smlen, const uint8_t *pk) {
const uint8_t *sigbuf;
size_t pmlen, sigbuflen;
if (smlen < 3 + NONCELEN) {
return -1;
}
sigbuflen = ((size_t)sm[0] << 8) | (size_t)sm[1];
if (sigbuflen < 2 || sigbuflen > (smlen - NONCELEN - 2)) {
return -1;
}
sigbuflen --;
pmlen = smlen - NONCELEN - 3 - sigbuflen;
if (sm[2 + NONCELEN + pmlen] != 0x20 + 10) {
return -1;
}
sigbuf = sm + 2 + NONCELEN + pmlen + 1;
/*
* The 2-byte length header and the one-byte signature header
* have been verified. Nonce is at sm+2, followed by the message
* itself. Message length is in pmlen. sigbuf/sigbuflen point to
* the signature value (excluding the header byte).
*/
if (do_verify(sm + 2, sigbuf, sigbuflen,
sm + 2 + NONCELEN, pmlen, pk) < 0) {
return -1;
}
/*
* Signature is correct, we just have to copy/move the message
* to its final destination. The memmove() properly handles
* overlaps.
*/
memmove(m, sm + 2 + NONCELEN, pmlen);
*mlen = pmlen;
return 0;
}