pqc/crypto_kem/mceliece6688128/vec/decrypt.c
Thom Wiggers b3f9d4f8d6
Classic McEliece (#259)
* Add McEliece reference implementations

* Add Vec implementations of McEliece

* Add sse implementations

* Add AVX2 implementations

* Get rid of stuff not supported by Mac ABI

* restrict to two cores

* Ditch .data files

* Remove .hidden from all .S files

* speed up duplicate consistency tests by batching

* make cpuinfo more robust

* Hope to stabilize macos cpuinfo without ccache

* Revert "Hope to stabilize macos cpuinfo without ccache"

This reverts commit 6129c3cabe1abbc8b956bc87e902a698e32bf322.

* Just hardcode what's available at travis

* Fixed-size types in api.h

* namespace all header files in mceliece

* Ditch operations.h

* Get rid of static inline functions

* fixup! Ditch operations.h
2020-02-05 13:09:56 +01:00

192 lines
4.2 KiB
C

/*
This file is for Niederreiter decryption
*/
#include "decrypt.h"
#include "benes.h"
#include "bm.h"
#include "fft.h"
#include "fft_tr.h"
#include "params.h"
#include "util.h"
#include "vec.h"
#include <stdio.h>
static void scaling(vec out[][GFBITS], vec inv[][GFBITS], const unsigned char *sk, const vec *recv) {
int i, j;
vec irr_int[2][ GFBITS ];
vec eval[128][ GFBITS ];
vec tmp[ GFBITS ];
//
PQCLEAN_MCELIECE6688128_VEC_irr_load(irr_int, sk);
PQCLEAN_MCELIECE6688128_VEC_fft(eval, irr_int);
for (i = 0; i < 128; i++) {
PQCLEAN_MCELIECE6688128_VEC_vec_sq(eval[i], eval[i]);
}
PQCLEAN_MCELIECE6688128_VEC_vec_copy(inv[0], eval[0]);
for (i = 1; i < 128; i++) {
PQCLEAN_MCELIECE6688128_VEC_vec_mul(inv[i], inv[i - 1], eval[i]);
}
PQCLEAN_MCELIECE6688128_VEC_vec_inv(tmp, inv[127]);
for (i = 126; i >= 0; i--) {
PQCLEAN_MCELIECE6688128_VEC_vec_mul(inv[i + 1], tmp, inv[i]);
PQCLEAN_MCELIECE6688128_VEC_vec_mul(tmp, tmp, eval[i + 1]);
}
PQCLEAN_MCELIECE6688128_VEC_vec_copy(inv[0], tmp);
//
for (i = 0; i < 128; i++) {
for (j = 0; j < GFBITS; j++) {
out[i][j] = inv[i][j] & recv[i];
}
}
}
static void preprocess(vec *recv, const unsigned char *s) {
int i;
unsigned char r[ 1024 ];
for (i = 0; i < SYND_BYTES; i++) {
r[i] = s[i];
}
for (i = SYND_BYTES; i < 1024; i++) {
r[i] = 0;
}
for (i = 0; i < 128; i++) {
recv[i] = PQCLEAN_MCELIECE6688128_VEC_load8(r + i * 8);
}
}
static void postprocess(unsigned char *e, vec *err) {
int i;
unsigned char error8[ (1 << GFBITS) / 8 ];
for (i = 0; i < 128; i++) {
PQCLEAN_MCELIECE6688128_VEC_store8(error8 + i * 8, err[i]);
}
for (i = 0; i < SYS_N / 8; i++) {
e[i] = error8[i];
}
}
static void scaling_inv(vec out[][GFBITS], vec inv[][GFBITS], const vec *recv) {
int i, j;
for (i = 0; i < 128; i++) {
for (j = 0; j < GFBITS; j++) {
out[i][j] = inv[i][j] & recv[i];
}
}
}
static int weight_check(const unsigned char *e, const vec *error) {
int i;
uint16_t w0 = 0;
uint16_t w1 = 0;
uint16_t check;
for (i = 0; i < (1 << GFBITS); i++) {
w0 += (error[i / 64] >> (i % 64)) & 1;
}
for (i = 0; i < SYS_N; i++) {
w1 += (e[i / 8] >> (i % 8)) & 1;
}
check = (w0 ^ SYS_T) | (w1 ^ SYS_T);
check -= 1;
check >>= 15;
return check;
}
static uint16_t synd_cmp(vec s0[][ GFBITS ], vec s1[][ GFBITS ]) {
int i, j;
vec diff = 0;
for (i = 0; i < 4; i++) {
for (j = 0; j < GFBITS; j++) {
diff |= (s0[i][j] ^ s1[i][j]);
}
}
return (uint16_t)PQCLEAN_MCELIECE6688128_VEC_vec_testz(diff);
}
/* Niederreiter decryption with the Berlekamp decoder */
/* intput: sk, secret key */
/* c, ciphertext (syndrome) */
/* output: e, error vector */
/* return: 0 for success; 1 for failure */
int PQCLEAN_MCELIECE6688128_VEC_decrypt(unsigned char *e, const unsigned char *sk, const unsigned char *c) {
int i;
uint16_t check_synd;
uint16_t check_weight;
vec inv[ 128 ][ GFBITS ];
vec scaled[ 128 ][ GFBITS ];
vec eval[ 128 ][ GFBITS ];
vec error[ 128 ];
vec s_priv[ 4 ][ GFBITS ];
vec s_priv_cmp[ 4 ][ GFBITS ];
vec locator[2][ GFBITS ];
vec recv[ 128 ];
vec allone;
// Berlekamp decoder
preprocess(recv, c);
PQCLEAN_MCELIECE6688128_VEC_benes(recv, sk + IRR_BYTES, 1);
scaling(scaled, inv, sk, recv);
PQCLEAN_MCELIECE6688128_VEC_fft_tr(s_priv, scaled);
PQCLEAN_MCELIECE6688128_VEC_bm(locator, s_priv);
PQCLEAN_MCELIECE6688128_VEC_fft(eval, locator);
// reencryption and weight check
allone = PQCLEAN_MCELIECE6688128_VEC_vec_setbits(1);
for (i = 0; i < 128; i++) {
error[i] = PQCLEAN_MCELIECE6688128_VEC_vec_or_reduce(eval[i]);
error[i] ^= allone;
}
scaling_inv(scaled, inv, error);
PQCLEAN_MCELIECE6688128_VEC_fft_tr(s_priv_cmp, scaled);
check_synd = synd_cmp(s_priv, s_priv_cmp);
//
PQCLEAN_MCELIECE6688128_VEC_benes(error, sk + IRR_BYTES, 0);
postprocess(e, error);
check_weight = (uint16_t)weight_check(e, error);
return 1 - (check_synd & check_weight);
}