pqc/crypto_kem/hqc-256/clean/bch.c
2021-03-24 21:02:47 +00:00

384 lines
14 KiB
C

#include "bch.h"
#include "fft.h"
#include "gf.h"
#include "parameters.h"
#include "vector.h"
#include <stdint.h>
#include <string.h>
/**
* @file bch.c
* Constant time implementation of BCH codes
*/
static uint16_t mod(uint16_t i, uint16_t modulus);
static void compute_cyclotomic_cosets(uint16_t *cosets, uint16_t upper_bound);
static void unpack_message(uint8_t *message_unpacked, const uint64_t *message);
static void lfsr_encode(uint8_t *codeword, const uint8_t *message);
static void pack_codeword(uint64_t *codeword, const uint8_t *codeword_unpacked);
static size_t compute_elp(uint16_t *sigma, const uint16_t *syndromes);
static void message_from_codeword(uint64_t *message, const uint64_t *codeword);
static void compute_syndromes(uint16_t *syndromes, const uint64_t *vector);
static void compute_roots(uint64_t *error, const uint16_t *sigma);
/**
* @brief Returns i modulo the given modulus.
*
* i must be less than 2*modulus.
* Therefore, the return value is either i or i-modulus.
* @returns i mod (modulus)
* @param[in] i The integer whose modulo is taken
* @param[in] modulus The modulus
*/
static uint16_t mod(uint16_t i, uint16_t modulus) {
uint16_t tmp = i - modulus;
// mask = 0xffff if(i < PARAM_GF_MUL_ORDER)
int16_t mask = -(tmp >> 15);
return tmp + (mask & modulus);
}
/**
* @brief Computes the odd binary cyclotomic cosets modulo 2^m-1 for integers less than upper_bound.
*
* The array cosets of size 2^m-1 is filled by placing at index i the coset representative of i.
* @param[out] cosets Array receiving the coset representatives
* @param[in] upper_bound The upper bound
*/
static void compute_cyclotomic_cosets(uint16_t *cosets, uint16_t upper_bound) {
// Compute the odd cyclotomic classes
for (uint16_t i = 1 ; i < upper_bound ; i += 2) {
if (cosets[i] == 0) { // If i does not already belong to a class
uint16_t tmp = i;
size_t j = PARAM_M;
cosets[i] = i;
while (--j) { // Complete i's class
tmp = mod(2 * tmp, PARAM_GF_MUL_ORDER);
cosets[tmp] = i;
}
}
}
}
/**
* @brief Computes the generator polynomial of the primitive BCH code with given parameters.
*
* Code length is 2^m-1. <br>
* Parameter t is the targeted correction capacity of the code
* and receives the real correction capacity (which is at least equal to the target). <br>
* exp and log are arrays giving antilog and log of GF(2^m) elements.
* @returns the degree of the generator polynomial
* @param[out] bch_poly Array of size (m*t + 1) receiving the coefficients of the generator polynomial
* @param[in,out] t Targeted correction capacity; receives the real correction capacity
* @param[in] exp Antilog table of GF(2^m)
* @param[in] log Log table of GF(2^m)
*/
size_t PQCLEAN_HQC256_CLEAN_compute_bch_poly(uint16_t *bch_poly, size_t *t, const uint16_t *exp, const uint16_t *log) {
uint16_t cosets[PARAM_GF_MUL_ORDER];
size_t deg_bch_poly = 0;
memset(cosets, 0, 2 * PARAM_GF_MUL_ORDER);
compute_cyclotomic_cosets(cosets, 2 * *t);
// Start with bch_poly(X) = 1
bch_poly[0] = 1;
for (uint16_t i = 1 ; i < PARAM_GF_MUL_ORDER ; ++i) {
if (cosets[i] == 0) {
continue;
}
// Multiply bch_poly(X) by X-a^i
for (size_t j = deg_bch_poly ; j ; --j) {
int16_t mask = -((uint16_t) - bch_poly[j] >> 15);
bch_poly[j] = (mask & exp[mod(log[bch_poly[j]] + i, PARAM_GF_MUL_ORDER)]) ^ bch_poly[j - 1];
}
bch_poly[0] = exp[mod(log[bch_poly[0]] + i, PARAM_GF_MUL_ORDER)];
bch_poly[++deg_bch_poly] = 1;
}
// Determine the real correction capacity
while (cosets[2 * *t + 1] != 0) {
++*t;
}
return deg_bch_poly;
}
/**
* @brief Unpacks the message message to the array message_unpacked where each byte stores a bit of the message
*
* @param[out] message_unpacked Array of VEC_K_SIZE_BYTES bytes receiving the unpacked message
* @param[in] message Array of PARAM_K bytes storing the packed message
*/
static void unpack_message(uint8_t *message_unpacked, const uint64_t *message) {
for (size_t i = 0 ; i < (VEC_K_SIZE_64 - (PARAM_K % 64 != 0)) ; ++i) {
for (size_t j = 0 ; j < 64 ; ++j) {
message_unpacked[j + 64 * i] = (message[i] >> j) & 0x0000000000000001;
}
}
for (int8_t j = 0 ; j < PARAM_K % 64 ; ++j) {
message_unpacked[j + 64 * (VEC_K_SIZE_64 - 1)] = (message[VEC_K_SIZE_64 - 1] >> j) & 0x0000000000000001;
}
}
/**
* @brief Encodes the message message to a codeword codeword using the generator polynomial bch_poly of the code
*
* @param[out] codeword Array of PARAM_N1 bytes receiving the codeword
* @param[in] message Array of PARAM_K bytes storing the message to encode
*/
static void lfsr_encode(uint8_t *codeword, const uint8_t *message) {
uint8_t gate_value = 0;
uint8_t bch_poly[PARAM_G] = PARAM_BCH_POLY;
// Compute the Parity-check digits
for (int16_t i = PARAM_K - 1 ; i >= 0 ; --i) {
gate_value = message[i] ^ codeword[PARAM_N1 - PARAM_K - 1];
for (size_t j = PARAM_N1 - PARAM_K - 1 ; j ; --j) {
codeword[j] = codeword[j - 1] ^ (-gate_value & bch_poly[j]);
}
codeword[0] = gate_value;
}
// Add the message
memcpy(codeword + PARAM_N1 - PARAM_K, message, PARAM_K);
}
/**
* @brief Packs the codeword from an array codeword_unpacked where each byte stores a bit to a compact array codeword
*
* @param[out] codeword Array of VEC_N1_SIZE_BYTES bytes receiving the packed codeword
* @param[in] codeword_unpacked Array of PARAM_N1 bytes storing the unpacked codeword
*/
static void pack_codeword(uint64_t *codeword, const uint8_t *codeword_unpacked) {
for (size_t i = 0 ; i < (VEC_N1_SIZE_64 - (PARAM_N1 % 64 != 0)) ; ++i) {
for (size_t j = 0 ; j < 64 ; ++j) {
codeword[i] |= ((uint64_t) codeword_unpacked[j + 64 * i]) << j;
}
}
for (size_t j = 0 ; j < PARAM_N1 % 64 ; ++j) {
codeword[VEC_N1_SIZE_64 - 1] |= ((uint64_t) codeword_unpacked[j + 64 * (VEC_N1_SIZE_64 - 1)]) << j;
}
}
/**
* @brief Encodes a message message of PARAM_K bits to a BCH codeword codeword of PARAM_N1 bits
*
* Following @cite lin1983error (Chapter 4 - Cyclic Codes),
* We perform a systematic encoding using a linear (PARAM_N1 - PARAM_K)-stage shift register
* with feedback connections based on the generator polynomial bch_poly of the BCH code.
*
* @param[out] codeword Array of size VEC_N1_SIZE_BYTES receiving the encoded message
* @param[in] message Array of size VEC_K_SIZE_BYTES storing the message
*/
void PQCLEAN_HQC256_CLEAN_bch_code_encode(uint64_t *codeword, const uint64_t *message) {
uint8_t message_unpacked[PARAM_K];
uint8_t codeword_unpacked[PARAM_N1] = {0};
unpack_message(message_unpacked, message);
lfsr_encode(codeword_unpacked, message_unpacked);
pack_codeword(codeword, codeword_unpacked);
}
/**
* @brief Computes the error locator polynomial (ELP) sigma
*
* This is a constant time implementation of Berlekamp's simplified algorithm (see @cite joiner1995decoding). <br>
* We use the letter p for rho which is initialized at -1/2. <br>
* The array X_sigma_p represents the polynomial X^(2(mu-rho))*sigma_p(X). <br>
* Instead of maintaining a list of sigmas, we update in place both sigma and X_sigma_p. <br>
* sigma_copy serves as a temporary save of sigma in case X_sigma_p needs to be updated. <br>
* We can properly correct only if the degree of sigma does not exceed PARAM_DELTA.
* This means only the first PARAM_DELTA + 1 coefficients of sigma are of value
* and we only need to save its first PARAM_DELTA - 1 coefficients.
*
* @returns the degree of the ELP sigma
* @param[out] sigma Array of size (at least) PARAM_DELTA receiving the ELP
* @param[in] syndromes Array of size (at least) 2*PARAM_DELTA storing the syndromes
*/
static size_t compute_elp(uint16_t *sigma, const uint16_t *syndromes) {
sigma[0] = 1;
size_t deg_sigma = 0;
size_t deg_sigma_p = 0;
uint16_t sigma_copy[PARAM_DELTA - 1] = {0};
size_t deg_sigma_copy = 0;
uint16_t X_sigma_p[PARAM_DELTA + 1] = {0, 1};
int32_t pp = -1; // 2*rho
uint16_t d_p = 1;
uint16_t d = syndromes[0];
for (size_t mu = 0 ; mu < PARAM_DELTA ; ++mu) {
// Save sigma in case we need it to update X_sigma_p
memcpy(sigma_copy, sigma, 2 * (PARAM_DELTA - 1));
deg_sigma_copy = deg_sigma;
uint16_t dd = PQCLEAN_HQC256_CLEAN_gf_mul(d, PQCLEAN_HQC256_CLEAN_gf_inverse(d_p)); // 0 if(d == 0)
for (size_t i = 1 ; (i <= 2 * mu + 1) && (i <= PARAM_DELTA) ; ++i) {
sigma[i] ^= PQCLEAN_HQC256_CLEAN_gf_mul(dd, X_sigma_p[i]);
}
size_t deg_X = 2 * mu - pp; // 2*(mu-rho)
size_t deg_X_sigma_p = deg_X + deg_sigma_p;
// mask1 = 0xffff if(d != 0) and 0 otherwise
int16_t mask1 = -((uint16_t) - d >> 15);
// mask2 = 0xffff if(deg_X_sigma_p > deg_sigma) and 0 otherwise
int16_t mask2 = -((uint16_t) (deg_sigma - deg_X_sigma_p) >> 15);
// mask12 = 0xffff if the deg_sigma increased and 0 otherwise
int16_t mask12 = mask1 & mask2;
deg_sigma = (mask12 & deg_X_sigma_p) ^ (~mask12 & deg_sigma);
if (mu == PARAM_DELTA - 1) {
break;
}
// Update pp, d_p and X_sigma_p if needed
pp = (mask12 & (2 * mu)) ^ (~mask12 & pp);
d_p = (mask12 & d) ^ (~mask12 & d_p);
for (size_t i = PARAM_DELTA - 1 ; i ; --i) {
X_sigma_p[i + 1] = (mask12 & sigma_copy[i - 1]) ^ (~mask12 & X_sigma_p[i - 1]);
}
X_sigma_p[1] = 0;
X_sigma_p[0] = 0;
deg_sigma_p = (mask12 & deg_sigma_copy) ^ (~mask12 & deg_sigma_p);
// Compute the next discrepancy
d = syndromes[2 * mu + 2];
for (size_t i = 1 ; (i <= 2 * mu + 1) && (i <= PARAM_DELTA) ; ++i) {
d ^= PQCLEAN_HQC256_CLEAN_gf_mul(sigma[i], syndromes[2 * mu + 2 - i]);
}
}
return deg_sigma;
}
/**
* @brief Retrieves the message message from the codeword codeword
*
* Since we performed a systematic encoding, the message is the last PARAM_K bits of the codeword.
*
* @param[out] message Array of size VEC_K_SIZE_BYTES receiving the message
* @param[in] codeword Array of size VEC_N1_SIZE_BYTES storing the codeword
*/
static void message_from_codeword(uint64_t *message, const uint64_t *codeword) {
int32_t val = PARAM_N1 - PARAM_K;
uint64_t mask1 = (uint64_t) (0xffffffffffffffff << val % 64);
uint64_t mask2 = (uint64_t) (0xffffffffffffffff >> (64 - val % 64));
size_t index = val / 64;
for (size_t i = 0 ; i < VEC_K_SIZE_64 - 1 ; ++i) {
uint64_t message1 = (codeword[index] & mask1) >> val % 64;
uint64_t message2 = (codeword[++index] & mask2) << (64 - val % 64);
message[i] = message1 | message2;
}
// Last byte (8-val % 8 is the number of bits given by message1)
if ((PARAM_K % 64 == 0) || (64 - val % 64 < PARAM_K % 64)) {
uint64_t message1 = (codeword[index] & mask1) >> val % 64;
uint64_t message2 = (codeword[++index] & mask2) << (64 - val % 64);
message[VEC_K_SIZE_64 - 1] = message1 | message2;
} else {
uint64_t message1 = (codeword[index] & mask1) >> val % 64;
message[VEC_K_SIZE_64 - 1] = message1;
}
}
/**
* @brief Computes the 2^PARAM_DELTA syndromes from the received vector vector
*
* Syndromes are the sum of powers of alpha weighted by vector's coefficients.
* To do so, we use the additive FFT transpose, which takes as input a family w of GF(2^PARAM_M) elements
* and outputs the weighted power sums of these w. <br>
* Therefore, this requires twisting and applying a permutation before feeding vector to the PQCLEAN_HQC256_CLEAN_fft transpose. <br>
* For more details see Berstein, Chou and Schawbe's explanations:
* https://binary.cr.yp.to/mcbits-20130616.pdf
*
* @param[out] syndromes Array of size 2^(PARAM_FFT_T) receiving the 2*PARAM_DELTA syndromes
* @param[in] vector Array of size VEC_N1_SIZE_BYTES storing the received word
*/
static void compute_syndromes(uint16_t *syndromes, const uint64_t *vector) {
uint16_t w[1 << PARAM_M];
PQCLEAN_HQC256_CLEAN_fft_t_preprocess_bch_codeword(w, vector);
PQCLEAN_HQC256_CLEAN_fft_t(syndromes, w, 2 * PARAM_DELTA);
}
/**
* @brief Computes the error polynomial error from the error locator polynomial sigma
*
* See function PQCLEAN_HQC256_CLEAN_fft for more details.
*
* @param[out] error Array of VEC_N1_SIZE_BYTES elements receiving the error polynomial
* @param[in] sigma Array of 2^PARAM_FFT elements storing the error locator polynomial
*/
static void compute_roots(uint64_t *error, const uint16_t *sigma) {
uint16_t w[1 << PARAM_M] = {0}; // w will receive the evaluation of sigma in all field elements
PQCLEAN_HQC256_CLEAN_fft(w, sigma, PARAM_DELTA + 1);
PQCLEAN_HQC256_CLEAN_fft_retrieve_bch_error_poly(error, w);
}
/**
* @brief Decodes the received word
*
* This function relies on four steps:
* <ol>
* <li> The first step, done by additive FFT transpose, is the computation of the 2*PARAM_DELTA syndromes.
* <li> The second step is the computation of the error-locator polynomial sigma.
* <li> The third step, done by additive FFT, is finding the error-locator numbers by calculating the roots of the polynomial sigma and takings their inverses.
* <li> The fourth step is the correction of the errors in the received polynomial.
* </ol>
* For a more complete picture on BCH decoding, see Shu. Lin and Daniel J. Costello in Error Control Coding: Fundamentals and Applications @cite lin1983error
*
* @param[out] message Array of size VEC_K_SIZE_BYTES receiving the decoded message
* @param[in] vector Array of size VEC_N1_SIZE_BYTES storing the received word
*/
void PQCLEAN_HQC256_CLEAN_bch_code_decode(uint64_t *message, uint64_t *vector) {
uint16_t syndromes[1 << PARAM_FFT_T] = {0};
uint16_t sigma[1 << PARAM_FFT] = {0};
uint64_t error[(1 << PARAM_M) / 8] = {0};
// Calculate the 2*PARAM_DELTA syndromes
compute_syndromes(syndromes, vector);
// Compute the error locator polynomial sigma
// Sigma's degree is at most PARAM_DELTA but the FFT requires the extra room
compute_elp(sigma, syndromes);
// Compute the error polynomial error
compute_roots(error, sigma);
// Add the error polynomial to the received polynomial
PQCLEAN_HQC256_CLEAN_vect_add(vector, vector, error, VEC_N1_SIZE_64);
// Retrieve the message from the decoded codeword
message_from_codeword(message, vector);
}