1
1
mirror of https://github.com/henrydcase/pqc.git synced 2024-11-22 23:48:58 +00:00

Partially validate return codes

This commit is contained in:
Thom Wiggers 2019-01-23 13:09:18 +01:00
parent 3549be95f5
commit 31449679bd
No known key found for this signature in database
GPG Key ID: 001BB0A7CE26E363
3 changed files with 51 additions and 18 deletions

View File

@ -41,6 +41,8 @@ _The checking of items on this list is still being developed. Checked items shou
* [ ] `aes.c` * [ ] `aes.c`
* [x] `randombytes.c` * [x] `randombytes.c`
* [ ] API functions return `0` on success, negative on failure * [ ] API functions return `0` on success, negative on failure
* [x] 0 on success
* [ ] Negative on failure (currently: partially)
* [ ] No dynamic memory allocations * [ ] No dynamic memory allocations
* [ ] No branching on secret data (dynamically checked using valgrind) * [ ] No branching on secret data (dynamically checked using valgrind)
* [ ] No access to secret memory locations (dynamically checked using valgrind) * [ ] No access to secret memory locations (dynamically checked using valgrind)

View File

@ -29,6 +29,12 @@ static int check_canary(const unsigned char *d) {
#define crypto_kem_enc NAMESPACE(crypto_kem_enc) #define crypto_kem_enc NAMESPACE(crypto_kem_enc)
#define crypto_kem_dec NAMESPACE(crypto_kem_dec) #define crypto_kem_dec NAMESPACE(crypto_kem_dec)
#define RETURNS_ZERO(f) \
if ((f) != 0) { \
puts(#f " returned non-zero returncode"); \
return -1; \
}
static int test_keys(void) { static int test_keys(void) {
unsigned char key_a[CRYPTO_BYTES + 16], key_b[CRYPTO_BYTES + 16]; unsigned char key_a[CRYPTO_BYTES + 16], key_b[CRYPTO_BYTES + 16];
unsigned char pk[CRYPTO_PUBLICKEYBYTES + 16]; unsigned char pk[CRYPTO_PUBLICKEYBYTES + 16];
@ -50,25 +56,26 @@ static int test_keys(void) {
for (i = 0; i < NTESTS; i++) { for (i = 0; i < NTESTS; i++) {
// Alice generates a public key // Alice generates a public key
crypto_kem_keypair(pk + 8, sk_a + 8); RETURNS_ZERO(crypto_kem_keypair(pk + 8, sk_a + 8));
// Bob derives a secret key and creates a response // Bob derives a secret key and creates a response
crypto_kem_enc(sendb + 8, key_b + 8, pk + 8); RETURNS_ZERO(crypto_kem_enc(sendb + 8, key_b + 8, pk + 8));
// Alice uses Bobs response to get her secret key // Alice uses Bobs response to get her secret key
crypto_kem_dec(key_a + 8, sendb + 8, sk_a + 8); RETURNS_ZERO(crypto_kem_dec(key_a + 8, sendb + 8, sk_a + 8));
if (memcmp(key_a + 8, key_b + 8, CRYPTO_BYTES) != 0) { if (memcmp(key_a + 8, key_b + 8, CRYPTO_BYTES) != 0) {
printf("ERROR KEYS\n"); printf("ERROR KEYS\n");
return 1; return -1;
} }
if (check_canary(key_a) || check_canary(key_a + sizeof(key_a) - 8) || if (check_canary(key_a) || check_canary(key_a + sizeof(key_a) - 8) ||
check_canary(key_b) || check_canary(key_b + sizeof(key_b) - 8) || check_canary(key_b) || check_canary(key_b + sizeof(key_b) - 8) ||
check_canary(pk) || check_canary(pk + sizeof(pk) - 8) || check_canary(pk) || check_canary(pk + sizeof(pk) - 8) ||
check_canary(sendb) || check_canary(sendb + sizeof(sendb) - 8) || check_canary(sendb) || check_canary(sendb + sizeof(sendb) - 8) ||
check_canary(sk_a) || check_canary(sk_a + sizeof(sk_a) - 8)) { check_canary(sk_a) || check_canary(sk_a + sizeof(sk_a) - 8)) {
printf("ERROR canary overwritten\n"); printf("ERROR canary overwritten\n");
return 1; return -1;
} }
} }
@ -81,19 +88,23 @@ static int test_invalid_sk_a(void) {
unsigned char pk[CRYPTO_PUBLICKEYBYTES]; unsigned char pk[CRYPTO_PUBLICKEYBYTES];
unsigned char sendb[CRYPTO_CIPHERTEXTBYTES]; unsigned char sendb[CRYPTO_CIPHERTEXTBYTES];
int i; int i;
int returncode;
for (i = 0; i < NTESTS; i++) { for (i = 0; i < NTESTS; i++) {
// Alice generates a public key // Alice generates a public key
crypto_kem_keypair(pk, sk_a); RETURNS_ZERO(crypto_kem_keypair(pk, sk_a));
// Bob derives a secret key and creates a response // Bob derives a secret key and creates a response
crypto_kem_enc(sendb, key_b, pk); RETURNS_ZERO(crypto_kem_enc(sendb, key_b, pk));
// Replace secret key with random values // Replace secret key with random values
randombytes(sk_a, CRYPTO_SECRETKEYBYTES); randombytes(sk_a, CRYPTO_SECRETKEYBYTES);
// Alice uses Bobs response to get her secret key // Alice uses Bobs response to get her secret key
crypto_kem_dec(key_a, sendb, sk_a); if ((returncode = crypto_kem_dec(key_a, sendb, sk_a)) > -1) {
printf("ERROR failing crypto_kem_dec returned %d instead of negative code\n", returncode);
return -1;
}
if (!memcmp(key_a, key_b, CRYPTO_BYTES)) { if (!memcmp(key_a, key_b, CRYPTO_BYTES)) {
printf("ERROR invalid sk_a\n"); printf("ERROR invalid sk_a\n");
@ -111,21 +122,25 @@ static int test_invalid_ciphertext(void) {
unsigned char sendb[CRYPTO_CIPHERTEXTBYTES]; unsigned char sendb[CRYPTO_CIPHERTEXTBYTES];
int i; int i;
size_t pos; size_t pos;
int returncode;
for (i = 0; i < NTESTS; i++) { for (i = 0; i < NTESTS; i++) {
randombytes((unsigned char *)&pos, sizeof(size_t)); randombytes((unsigned char *)&pos, sizeof(size_t));
// Alice generates a public key // Alice generates a public key
crypto_kem_keypair(pk, sk_a); RETURNS_ZERO(crypto_kem_keypair(pk, sk_a));
// Bob derives a secret key and creates a response // Bob derives a secret key and creates a response
crypto_kem_enc(sendb, key_b, pk); RETURNS_ZERO(crypto_kem_enc(sendb, key_b, pk));
// Change some byte in the ciphertext (i.e., encapsulated key) // Change some byte in the ciphertext (i.e., encapsulated key)
sendb[pos % CRYPTO_CIPHERTEXTBYTES] ^= 23; sendb[pos % CRYPTO_CIPHERTEXTBYTES] ^= 23;
// Alice uses Bobs response to get her secret key // Alice uses Bobs response to get her secret key
crypto_kem_dec(key_a, sendb, sk_a); if ((returncode = crypto_kem_dec(key_a, sendb, sk_a)) > -1) {
printf("ERROR crypto_kem_dec should fail (negative returncode) but returned %d\n", returncode);
return -1;
}
if (!memcmp(key_a, key_b, CRYPTO_BYTES)) { if (!memcmp(key_a, key_b, CRYPTO_BYTES)) {
printf("ERROR invalid ciphertext\n"); printf("ERROR invalid ciphertext\n");

View File

@ -30,6 +30,13 @@ static int check_canary(const unsigned char *d) {
#define crypto_sign NAMESPACE(crypto_sign) #define crypto_sign NAMESPACE(crypto_sign)
#define crypto_sign_open NAMESPACE(crypto_sign_open) #define crypto_sign_open NAMESPACE(crypto_sign_open)
#define RETURNS_ZERO(f) \
if ((f) != 0) { \
puts("(f) returned non-zero returncode"); \
return -1; \
}
static int test_sign(void) { static int test_sign(void) {
unsigned char pk[CRYPTO_PUBLICKEYBYTES + 16]; unsigned char pk[CRYPTO_PUBLICKEYBYTES + 16];
unsigned char sk[CRYPTO_SECRETKEYBYTES + 16]; unsigned char sk[CRYPTO_SECRETKEYBYTES + 16];
@ -38,6 +45,7 @@ static int test_sign(void) {
unsigned long long mlen; unsigned long long mlen;
unsigned long long smlen; unsigned long long smlen;
int returncode;
int i; int i;
write_canary(pk); write_canary(pk);
@ -50,15 +58,18 @@ static int test_sign(void) {
write_canary(m + sizeof(m) - 8); write_canary(m + sizeof(m) - 8);
for (i = 0; i < NTESTS; i++) { for (i = 0; i < NTESTS; i++) {
crypto_sign_keypair(pk + 8, sk + 8); RETURNS_ZERO(crypto_sign_keypair(pk + 8, sk + 8));
randombytes(m + 8, MLEN); randombytes(m + 8, MLEN);
crypto_sign(sm + 8, &smlen, m + 8, MLEN, sk + 8); RETURNS_ZERO(crypto_sign(sm + 8, &smlen, m + 8, MLEN, sk + 8));
// By relying on m == sm we prevent having to allocate CRYPTO_BYTES // By relying on m == sm we prevent having to allocate CRYPTO_BYTES
// twice // twice
if (crypto_sign_open(sm + 8, &mlen, sm + 8, smlen, pk + 8)) { if ((returncode = crypto_sign_open(sm + 8, &mlen, sm + 8, smlen, pk + 8)) != 0) {
printf("ERROR Signature did not verify correctly!\n"); printf("ERROR Signature did not verify correctly!\n");
if (returncode > 0) {
puts("ERROR return code should be < 0 on failure");
}
return 1; return 1;
} }
if (check_canary(pk) || check_canary(pk + sizeof(pk) - 8) || if (check_canary(pk) || check_canary(pk + sizeof(pk) - 8) ||
@ -83,21 +94,26 @@ static int test_wrong_pk(void) {
unsigned long long mlen; unsigned long long mlen;
unsigned long long smlen; unsigned long long smlen;
int returncode;
int i; int i;
for (i = 0; i < NTESTS; i++) { for (i = 0; i < NTESTS; i++) {
crypto_sign_keypair(pk2, sk); RETURNS_ZERO(crypto_sign_keypair(pk2, sk));
crypto_sign_keypair(pk, sk); RETURNS_ZERO(crypto_sign_keypair(pk, sk));
randombytes(m, MLEN); randombytes(m, MLEN);
crypto_sign(sm, &smlen, m, MLEN, sk); RETURNS_ZERO(crypto_sign(sm, &smlen, m, MLEN, sk));
// By relying on m == sm we prevent having to allocate CRYPTO_BYTES // By relying on m == sm we prevent having to allocate CRYPTO_BYTES
// twice // twice
if (!crypto_sign_open(sm, &mlen, sm, smlen, pk2)) { if (!(returncode = crypto_sign_open(sm, &mlen, sm, smlen, pk2))) {
printf("ERROR Signature did verify correctly under wrong public " printf("ERROR Signature did verify correctly under wrong public "
"key!\n"); "key!\n");
if (returncode > 0) {
puts("ERROR return code should be < 0");
}
return 1; return 1;
} }
} }