Browse Source

rename impl to leaktime

tags/v0.0.1
Leon 5 years ago
parent
commit
e5b9b13160
75 changed files with 539 additions and 539 deletions
  1. +1
    -1
      crypto_kem/ledakemlt12/META.yml
  2. +0
    -11
      crypto_kem/ledakemlt12/clean/H_Q_matrices_generation.h
  3. +0
    -18
      crypto_kem/ledakemlt12/clean/api.h
  4. +0
    -8
      crypto_kem/ledakemlt12/clean/dfr_test.h
  5. +0
    -38
      crypto_kem/ledakemlt12/clean/gf2x_arith_mod_xPplusOne.h
  6. +4
    -4
      crypto_kem/ledakemlt12/leaktime/H_Q_matrices_generation.c
  7. +11
    -0
      crypto_kem/ledakemlt12/leaktime/H_Q_matrices_generation.h
  8. +0
    -0
      crypto_kem/ledakemlt12/leaktime/LICENSE
  9. +1
    -1
      crypto_kem/ledakemlt12/leaktime/Makefile
  10. +1
    -1
      crypto_kem/ledakemlt12/leaktime/Makefile.Microsoft_nmake
  11. +18
    -0
      crypto_kem/ledakemlt12/leaktime/api.h
  12. +5
    -5
      crypto_kem/ledakemlt12/leaktime/bf_decoding.c
  13. +1
    -1
      crypto_kem/ledakemlt12/leaktime/bf_decoding.h
  14. +3
    -3
      crypto_kem/ledakemlt12/leaktime/dfr_test.c
  15. +8
    -0
      crypto_kem/ledakemlt12/leaktime/dfr_test.h
  16. +4
    -4
      crypto_kem/ledakemlt12/leaktime/gf2x_arith.c
  17. +4
    -4
      crypto_kem/ledakemlt12/leaktime/gf2x_arith.h
  18. +27
    -27
      crypto_kem/ledakemlt12/leaktime/gf2x_arith_mod_xPplusOne.c
  19. +38
    -0
      crypto_kem/ledakemlt12/leaktime/gf2x_arith_mod_xPplusOne.h
  20. +16
    -16
      crypto_kem/ledakemlt12/leaktime/kem.c
  21. +31
    -31
      crypto_kem/ledakemlt12/leaktime/niederreiter.c
  22. +3
    -3
      crypto_kem/ledakemlt12/leaktime/niederreiter.h
  23. +0
    -0
      crypto_kem/ledakemlt12/leaktime/qc_ldpc_parameters.h
  24. +2
    -2
      crypto_kem/ledakemlt12/leaktime/rng.c
  25. +2
    -2
      crypto_kem/ledakemlt12/leaktime/rng.h
  26. +1
    -1
      crypto_kem/ledakemlt32/META.yml
  27. +0
    -11
      crypto_kem/ledakemlt32/clean/H_Q_matrices_generation.h
  28. +0
    -18
      crypto_kem/ledakemlt32/clean/api.h
  29. +0
    -8
      crypto_kem/ledakemlt32/clean/dfr_test.h
  30. +0
    -38
      crypto_kem/ledakemlt32/clean/gf2x_arith_mod_xPplusOne.h
  31. +4
    -4
      crypto_kem/ledakemlt32/leaktime/H_Q_matrices_generation.c
  32. +11
    -0
      crypto_kem/ledakemlt32/leaktime/H_Q_matrices_generation.h
  33. +0
    -0
      crypto_kem/ledakemlt32/leaktime/LICENSE
  34. +1
    -1
      crypto_kem/ledakemlt32/leaktime/Makefile
  35. +1
    -1
      crypto_kem/ledakemlt32/leaktime/Makefile.Microsoft_nmake
  36. +18
    -0
      crypto_kem/ledakemlt32/leaktime/api.h
  37. +5
    -5
      crypto_kem/ledakemlt32/leaktime/bf_decoding.c
  38. +1
    -1
      crypto_kem/ledakemlt32/leaktime/bf_decoding.h
  39. +3
    -3
      crypto_kem/ledakemlt32/leaktime/dfr_test.c
  40. +8
    -0
      crypto_kem/ledakemlt32/leaktime/dfr_test.h
  41. +4
    -4
      crypto_kem/ledakemlt32/leaktime/gf2x_arith.c
  42. +4
    -4
      crypto_kem/ledakemlt32/leaktime/gf2x_arith.h
  43. +27
    -27
      crypto_kem/ledakemlt32/leaktime/gf2x_arith_mod_xPplusOne.c
  44. +38
    -0
      crypto_kem/ledakemlt32/leaktime/gf2x_arith_mod_xPplusOne.h
  45. +16
    -16
      crypto_kem/ledakemlt32/leaktime/kem.c
  46. +31
    -31
      crypto_kem/ledakemlt32/leaktime/niederreiter.c
  47. +3
    -3
      crypto_kem/ledakemlt32/leaktime/niederreiter.h
  48. +0
    -0
      crypto_kem/ledakemlt32/leaktime/qc_ldpc_parameters.h
  49. +2
    -2
      crypto_kem/ledakemlt32/leaktime/rng.c
  50. +2
    -2
      crypto_kem/ledakemlt32/leaktime/rng.h
  51. +1
    -1
      crypto_kem/ledakemlt52/META.yml
  52. +0
    -11
      crypto_kem/ledakemlt52/clean/H_Q_matrices_generation.h
  53. +0
    -18
      crypto_kem/ledakemlt52/clean/api.h
  54. +0
    -8
      crypto_kem/ledakemlt52/clean/dfr_test.h
  55. +0
    -37
      crypto_kem/ledakemlt52/clean/gf2x_arith_mod_xPplusOne.h
  56. +4
    -4
      crypto_kem/ledakemlt52/leaktime/H_Q_matrices_generation.c
  57. +11
    -0
      crypto_kem/ledakemlt52/leaktime/H_Q_matrices_generation.h
  58. +0
    -0
      crypto_kem/ledakemlt52/leaktime/LICENSE
  59. +1
    -1
      crypto_kem/ledakemlt52/leaktime/Makefile
  60. +1
    -1
      crypto_kem/ledakemlt52/leaktime/Makefile.Microsoft_nmake
  61. +18
    -0
      crypto_kem/ledakemlt52/leaktime/api.h
  62. +5
    -5
      crypto_kem/ledakemlt52/leaktime/bf_decoding.c
  63. +1
    -1
      crypto_kem/ledakemlt52/leaktime/bf_decoding.h
  64. +3
    -3
      crypto_kem/ledakemlt52/leaktime/dfr_test.c
  65. +8
    -0
      crypto_kem/ledakemlt52/leaktime/dfr_test.h
  66. +4
    -4
      crypto_kem/ledakemlt52/leaktime/gf2x_arith.c
  67. +4
    -4
      crypto_kem/ledakemlt52/leaktime/gf2x_arith.h
  68. +27
    -27
      crypto_kem/ledakemlt52/leaktime/gf2x_arith_mod_xPplusOne.c
  69. +37
    -0
      crypto_kem/ledakemlt52/leaktime/gf2x_arith_mod_xPplusOne.h
  70. +16
    -16
      crypto_kem/ledakemlt52/leaktime/kem.c
  71. +31
    -31
      crypto_kem/ledakemlt52/leaktime/niederreiter.c
  72. +3
    -3
      crypto_kem/ledakemlt52/leaktime/niederreiter.h
  73. +0
    -0
      crypto_kem/ledakemlt52/leaktime/qc_ldpc_parameters.h
  74. +2
    -2
      crypto_kem/ledakemlt52/leaktime/rng.c
  75. +2
    -2
      crypto_kem/ledakemlt52/leaktime/rng.h

+ 1
- 1
crypto_kem/ledakemlt12/META.yml View File

@@ -14,5 +14,5 @@ auxiliary-submitters:
- Gerardo Pelosi
- Paolo Santini
implementations:
- name: clean
- name: leaktime
version: 2.?

+ 0
- 11
crypto_kem/ledakemlt12/clean/H_Q_matrices_generation.h View File

@@ -1,11 +0,0 @@
#ifndef H_Q_MATRICES_GENERATION_H
#define H_Q_MATRICES_GENERATION_H

#include "gf2x_arith.h"
#include "qc_ldpc_parameters.h"
#include "rng.h"

void PQCLEAN_LEDAKEMLT12_CLEAN_generateHPosOnes_HtrPosOnes(POSITION_T HPosOnes[N0][DV], POSITION_T HtrPosOnes[N0][DV], AES_XOF_struct *niederreiter_keys_expander);
void PQCLEAN_LEDAKEMLT12_CLEAN_generateQsparse(POSITION_T pos_ones[N0][M], AES_XOF_struct *niederreiter_keys_expander);

#endif

+ 0
- 18
crypto_kem/ledakemlt12/clean/api.h View File

@@ -1,18 +0,0 @@
#ifndef PQCLEAN_LEDAKEMLT12_CLEAN_API_H
#define PQCLEAN_LEDAKEMLT12_CLEAN_API_H

#include <stdint.h>

#define PQCLEAN_LEDAKEMLT12_CLEAN_CRYPTO_SECRETKEYBYTES 26
#define PQCLEAN_LEDAKEMLT12_CLEAN_CRYPTO_PUBLICKEYBYTES 6520
#define PQCLEAN_LEDAKEMLT12_CLEAN_CRYPTO_CIPHERTEXTBYTES 6520
#define PQCLEAN_LEDAKEMLT12_CLEAN_CRYPTO_BYTES 32

#define PQCLEAN_LEDAKEMLT12_CLEAN_CRYPTO_ALGNAME "LEDAKEMLT12"

int PQCLEAN_LEDAKEMLT12_CLEAN_crypto_kem_keypair(uint8_t *pk, uint8_t *sk);
int PQCLEAN_LEDAKEMLT12_CLEAN_crypto_kem_enc(uint8_t *ct, uint8_t *ss, const uint8_t *pk);
int PQCLEAN_LEDAKEMLT12_CLEAN_crypto_kem_dec(uint8_t *ss, const uint8_t *ct, const uint8_t *sk);


#endif

+ 0
- 8
crypto_kem/ledakemlt12/clean/dfr_test.h View File

@@ -1,8 +0,0 @@
#ifndef DFR_TEST_H
#define DFR_TEST_H

#define DFR_TEST_FAIL (255)

uint8_t PQCLEAN_LEDAKEMLT12_CLEAN_DFR_test(POSITION_T LSparse[N0][DV * M]);

#endif

+ 0
- 38
crypto_kem/ledakemlt12/clean/gf2x_arith_mod_xPplusOne.h View File

@@ -1,38 +0,0 @@
#ifndef GF2X_ARITH_MOD_XPLUSONE_H
#define GF2X_ARITH_MOD_XPLUSONE_H

#include "qc_ldpc_parameters.h"

#include "gf2x_arith.h"
#include "rng.h"

#define NUM_BITS_GF2X_ELEMENT (P) // 52147
#define NUM_DIGITS_GF2X_ELEMENT ((P+DIGIT_SIZE_b-1)/DIGIT_SIZE_b)
#define MSb_POSITION_IN_MSB_DIGIT_OF_ELEMENT ((P % DIGIT_SIZE_b) ? (P % DIGIT_SIZE_b)-1 : DIGIT_SIZE_b-1)
#define NUM_BITS_GF2X_MODULUS (P+1)
#define NUM_DIGITS_GF2X_MODULUS ((P+1+DIGIT_SIZE_b-1)/DIGIT_SIZE_b)
#define MSb_POSITION_IN_MSB_DIGIT_OF_MODULUS (P-DIGIT_SIZE_b*(NUM_DIGITS_GF2X_MODULUS-1))
#define INVALID_POS_VALUE (P)
#define P_BITS (16) // log_2(p) = 15.6703

void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_copy(DIGIT dest[], const DIGIT in[]);
DIGIT PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_get_coeff(const DIGIT poly[], unsigned int exponent);
void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_set_coeff(DIGIT poly[], unsigned int exponent, DIGIT value);
void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_toggle_coeff(DIGIT poly[], unsigned int exponent);
int PQCLEAN_LEDAKEMLT12_CLEAN_population_count(DIGIT *poly);
void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_add(DIGIT Res[], const DIGIT A[], const DIGIT B[]);
void PQCLEAN_LEDAKEMLT12_CLEAN_quicksort_sparse(POSITION_T Res[]);
void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_mul(DIGIT Res[], const DIGIT A[], const DIGIT B[]);
void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_transpose_in_place(DIGIT A[]);
void PQCLEAN_LEDAKEMLT12_CLEAN_rand_circulant_sparse_block(POSITION_T *pos_ones, int countOnes, AES_XOF_struct *seed_expander_ctx);
void PQCLEAN_LEDAKEMLT12_CLEAN_rand_circulant_blocks_sequence(DIGIT *sequence, AES_XOF_struct *seed_expander_ctx);
void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_add_sparse(int sizeR, POSITION_T Res[], int sizeA, const POSITION_T A[], int sizeB, const POSITION_T B[]);
void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_transpose_in_place_sparse(int sizeA, POSITION_T A[]);
int PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_inverse(DIGIT out[], const DIGIT in[]);
void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_mul_sparse(size_t sizeR, POSITION_T Res[], size_t sizeA, const POSITION_T A[], size_t sizeB, const POSITION_T B[]);
void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_mul_dense_to_sparse(DIGIT Res[], const DIGIT dense[], POSITION_T sparse[], unsigned int nPos);
void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_tobytes(uint8_t *bytes, const DIGIT *poly);
void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_frombytes(DIGIT *poly, const uint8_t *poly_bytes);


#endif

crypto_kem/ledakemlt12/clean/H_Q_matrices_generation.c → crypto_kem/ledakemlt12/leaktime/H_Q_matrices_generation.c View File

@@ -1,13 +1,13 @@
#include "H_Q_matrices_generation.h"
#include "gf2x_arith_mod_xPplusOne.h"

void PQCLEAN_LEDAKEMLT12_CLEAN_generateHPosOnes_HtrPosOnes(
void PQCLEAN_LEDAKEMLT12_LEAKTIME_generateHPosOnes_HtrPosOnes(
POSITION_T HPosOnes[N0][DV],
POSITION_T HtrPosOnes[N0][DV],
AES_XOF_struct *keys_expander) {
for (int i = 0; i < N0; i++) {
/* Generate a random block of Htr */
PQCLEAN_LEDAKEMLT12_CLEAN_rand_circulant_sparse_block(&HtrPosOnes[i][0], DV, keys_expander);
PQCLEAN_LEDAKEMLT12_LEAKTIME_rand_circulant_sparse_block(&HtrPosOnes[i][0], DV, keys_expander);
}
for (int i = 0; i < N0; i++) {
/* Obtain directly the sparse representation of the block of H */
@@ -17,13 +17,13 @@ void PQCLEAN_LEDAKEMLT12_CLEAN_generateHPosOnes_HtrPosOnes(
}
}

void PQCLEAN_LEDAKEMLT12_CLEAN_generateQsparse(
void PQCLEAN_LEDAKEMLT12_LEAKTIME_generateQsparse(
POSITION_T pos_ones[N0][M],
AES_XOF_struct *keys_expander) {
for (int i = 0; i < N0; i++) {
int placed_ones = 0;
for (int j = 0; j < N0; j++) {
PQCLEAN_LEDAKEMLT12_CLEAN_rand_circulant_sparse_block(&pos_ones[i][placed_ones],
PQCLEAN_LEDAKEMLT12_LEAKTIME_rand_circulant_sparse_block(&pos_ones[i][placed_ones],
qBlockWeights[i][j],
keys_expander);
placed_ones += qBlockWeights[i][j];

+ 11
- 0
crypto_kem/ledakemlt12/leaktime/H_Q_matrices_generation.h View File

@@ -0,0 +1,11 @@
#ifndef H_Q_MATRICES_GENERATION_H
#define H_Q_MATRICES_GENERATION_H

#include "gf2x_arith.h"
#include "qc_ldpc_parameters.h"
#include "rng.h"

void PQCLEAN_LEDAKEMLT12_LEAKTIME_generateHPosOnes_HtrPosOnes(POSITION_T HPosOnes[N0][DV], POSITION_T HtrPosOnes[N0][DV], AES_XOF_struct *niederreiter_keys_expander);
void PQCLEAN_LEDAKEMLT12_LEAKTIME_generateQsparse(POSITION_T pos_ones[N0][M], AES_XOF_struct *niederreiter_keys_expander);

#endif

crypto_kem/ledakemlt12/clean/LICENSE → crypto_kem/ledakemlt12/leaktime/LICENSE View File


crypto_kem/ledakemlt52/clean/Makefile → crypto_kem/ledakemlt12/leaktime/Makefile View File

@@ -1,6 +1,6 @@
# This Makefile can be used with GNU Make or BSD Make

LIB=libledakemlt52_clean.a
LIB=libledakemlt12_leaktime.a
HEADERS=api.h bf_decoding.h dfr_test.h gf2x_arith_mod_xPplusOne.h \
gf2x_arith.h H_Q_matrices_generation.h \
niederreiter.h qc_ldpc_parameters.h rng.h

crypto_kem/ledakemlt32/clean/Makefile.Microsoft_nmake → crypto_kem/ledakemlt12/leaktime/Makefile.Microsoft_nmake View File

@@ -1,7 +1,7 @@
# This Makefile can be used with Microsoft Visual Studio's nmake using the command:
# nmake /f Makefile.Microsoft_nmake

LIBRARY=libledakemlt32_clean.lib
LIBRARY=libledakemlt12_leaktime.lib
OBJECTS=bf_decoding.obj dfr_test.obj gf2x_arith_mod_xPplusOne.obj gf2x_arith.obj H_Q_matrices_generation.obj kem.obj niederreiter.obj rng.obj

CFLAGS=/nologo /I ..\..\..\common /W4 /WX

+ 18
- 0
crypto_kem/ledakemlt12/leaktime/api.h View File

@@ -0,0 +1,18 @@
#ifndef PQCLEAN_LEDAKEMLT12_LEAKTIME_API_H
#define PQCLEAN_LEDAKEMLT12_LEAKTIME_API_H

#include <stdint.h>

#define PQCLEAN_LEDAKEMLT12_LEAKTIME_CRYPTO_SECRETKEYBYTES 26
#define PQCLEAN_LEDAKEMLT12_LEAKTIME_CRYPTO_PUBLICKEYBYTES 6520
#define PQCLEAN_LEDAKEMLT12_LEAKTIME_CRYPTO_CIPHERTEXTBYTES 6520
#define PQCLEAN_LEDAKEMLT12_LEAKTIME_CRYPTO_BYTES 32

#define PQCLEAN_LEDAKEMLT12_LEAKTIME_CRYPTO_ALGNAME "LEDAKEMLT12"

int PQCLEAN_LEDAKEMLT12_LEAKTIME_crypto_kem_keypair(uint8_t *pk, uint8_t *sk);
int PQCLEAN_LEDAKEMLT12_LEAKTIME_crypto_kem_enc(uint8_t *ct, uint8_t *ss, const uint8_t *pk);
int PQCLEAN_LEDAKEMLT12_LEAKTIME_crypto_kem_dec(uint8_t *ss, const uint8_t *ct, const uint8_t *sk);


#endif

crypto_kem/ledakemlt12/clean/bf_decoding.c → crypto_kem/ledakemlt12/leaktime/bf_decoding.c View File

@@ -4,7 +4,7 @@
#include <assert.h>
#include <string.h>

int PQCLEAN_LEDAKEMLT12_CLEAN_bf_decoding(DIGIT err[],
int PQCLEAN_LEDAKEMLT12_LEAKTIME_bf_decoding(DIGIT err[],
const POSITION_T HtrPosOnes[N0][DV],
const POSITION_T QtrPosOnes[N0][M],
DIGIT privateSyndrome[],
@@ -18,13 +18,13 @@ int PQCLEAN_LEDAKEMLT12_CLEAN_bf_decoding(DIGIT err[],
unsigned int corrt_syndrome_based;

do {
PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_copy(currSyndrome, privateSyndrome);
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_copy(currSyndrome, privateSyndrome);
memset(unsatParityChecks, 0x00, N0 * P * sizeof(uint8_t));
for (int i = 0; i < N0; i++) {
for (int valueIdx = 0; valueIdx < P; valueIdx++) {
for (int HtrOneIdx = 0; HtrOneIdx < DV; HtrOneIdx++) {
POSITION_T tmp = (HtrPosOnes[i][HtrOneIdx] + valueIdx) >= P ? (HtrPosOnes[i][HtrOneIdx] + valueIdx) - P : (HtrPosOnes[i][HtrOneIdx] + valueIdx);
if (PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_get_coeff(currSyndrome, tmp)) {
if (PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_get_coeff(currSyndrome, tmp)) {
unsatParityChecks[i * P + valueIdx]++;
}
}
@@ -54,13 +54,13 @@ int PQCLEAN_LEDAKEMLT12_CLEAN_bf_decoding(DIGIT err[],
}
/* Correlation based flipping */
if (correlation >= corrt_syndrome_based) {
PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_toggle_coeff(err + NUM_DIGITS_GF2X_ELEMENT * i, j);
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_toggle_coeff(err + NUM_DIGITS_GF2X_ELEMENT * i, j);
for (int v = 0; v < M; v++) {
POSITION_T syndromePosToFlip;
for (int HtrOneIdx = 0; HtrOneIdx < DV; HtrOneIdx++) {
syndromePosToFlip = (HtrPosOnes[currQBlkPos[v]][HtrOneIdx] + currQBitPos[v] );
syndromePosToFlip = syndromePosToFlip >= P ? syndromePosToFlip - P : syndromePosToFlip;
PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_toggle_coeff(privateSyndrome, syndromePosToFlip);
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_toggle_coeff(privateSyndrome, syndromePosToFlip);
}
} // end for v
} // end if

crypto_kem/ledakemlt12/clean/bf_decoding.h → crypto_kem/ledakemlt12/leaktime/bf_decoding.h View File

@@ -9,7 +9,7 @@
#define B0 (43)
#define T_BAR (4)

int PQCLEAN_LEDAKEMLT12_CLEAN_bf_decoding(DIGIT err[],
int PQCLEAN_LEDAKEMLT12_LEAKTIME_bf_decoding(DIGIT err[],
const POSITION_T HtrPosOnes[N0][DV],
const POSITION_T QtrPosOnes[N0][M],
DIGIT privateSyndrome[],

crypto_kem/ledakemlt32/clean/dfr_test.c → crypto_kem/ledakemlt12/leaktime/dfr_test.c View File

@@ -9,7 +9,7 @@
* computes the threshold for the second iteration of the decoder and returns this values
* (max DV * M), on failure it returns 255 >> DV * M */

uint8_t PQCLEAN_LEDAKEMLT32_CLEAN_DFR_test(POSITION_T LSparse[N0][DV * M]) {
uint8_t PQCLEAN_LEDAKEMLT12_LEAKTIME_DFR_test(POSITION_T LSparse[N0][DV * M]) {

POSITION_T LSparse_loc[N0][DV * M];
POSITION_T rotated_column[DV * M];
@@ -31,7 +31,7 @@ uint8_t PQCLEAN_LEDAKEMLT32_CLEAN_DFR_test(POSITION_T LSparse[N0][DV * M]) {
LSparse_loc[i][j] = (P - LSparse[i][j]);
}
}
PQCLEAN_LEDAKEMLT32_CLEAN_quicksort_sparse(LSparse_loc[i]);
PQCLEAN_LEDAKEMLT12_LEAKTIME_quicksort_sparse(LSparse_loc[i]);
}

for (int i = 0; i < N0; i++ ) {
@@ -41,7 +41,7 @@ uint8_t PQCLEAN_LEDAKEMLT32_CLEAN_DFR_test(POSITION_T LSparse[N0][DV * M]) {
for (int idxToRotate = 0; idxToRotate < (DV * M); idxToRotate++) {
rotated_column[idxToRotate] = (LSparse_loc[j][idxToRotate] + k) % P;
}
PQCLEAN_LEDAKEMLT32_CLEAN_quicksort_sparse(rotated_column);
PQCLEAN_LEDAKEMLT12_LEAKTIME_quicksort_sparse(rotated_column);
/* compute the intersection amount */
firstidx = 0, secondidx = 0;
intersectionval = 0;

+ 8
- 0
crypto_kem/ledakemlt12/leaktime/dfr_test.h View File

@@ -0,0 +1,8 @@
#ifndef DFR_TEST_H
#define DFR_TEST_H

#define DFR_TEST_FAIL (255)

uint8_t PQCLEAN_LEDAKEMLT12_LEAKTIME_DFR_test(POSITION_T LSparse[N0][DV * M]);

#endif

crypto_kem/ledakemlt52/clean/gf2x_arith.c → crypto_kem/ledakemlt12/leaktime/gf2x_arith.c View File

@@ -3,14 +3,14 @@
#include <assert.h>
#include <string.h> // memset(...)

void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_add(DIGIT Res[], const DIGIT A[], const DIGIT B[], int nr) {
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_add(DIGIT Res[], const DIGIT A[], const DIGIT B[], int nr) {
for (int i = 0; i < nr; i++) {
Res[i] = A[i] ^ B[i];
}
}

/* PRE: MAX ALLOWED ROTATION AMOUNT : DIGIT_SIZE_b */
void PQCLEAN_LEDAKEMLT52_CLEAN_right_bit_shift_n(int length, DIGIT in[], unsigned int amount) {
void PQCLEAN_LEDAKEMLT12_LEAKTIME_right_bit_shift_n(int length, DIGIT in[], unsigned int amount) {
assert(amount < DIGIT_SIZE_b);
if ( amount == 0 ) {
return;
@@ -26,7 +26,7 @@ void PQCLEAN_LEDAKEMLT52_CLEAN_right_bit_shift_n(int length, DIGIT in[], unsigne
}

/* PRE: MAX ALLOWED ROTATION AMOUNT : DIGIT_SIZE_b */
void PQCLEAN_LEDAKEMLT52_CLEAN_left_bit_shift_n(int length, DIGIT in[], unsigned int amount) {
void PQCLEAN_LEDAKEMLT12_LEAKTIME_left_bit_shift_n(int length, DIGIT in[], unsigned int amount) {
assert(amount < DIGIT_SIZE_b);
if ( amount == 0 ) {
return;
@@ -41,7 +41,7 @@ void PQCLEAN_LEDAKEMLT52_CLEAN_left_bit_shift_n(int length, DIGIT in[], unsigned
in[j] <<= amount;
}

void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mul_comb(int nr, DIGIT Res[],
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mul_comb(int nr, DIGIT Res[],
int na, const DIGIT A[],
int nb, const DIGIT B[]) {
int i, j, k;

crypto_kem/ledakemlt52/clean/gf2x_arith.h → crypto_kem/ledakemlt12/leaktime/gf2x_arith.h View File

@@ -48,11 +48,11 @@ typedef uint64_t DIGIT;
#define DIGIT_SIZE_b (DIGIT_SIZE_B << 3)
#define POSITION_T uint32_t

#define GF2X_MUL PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mul_comb
#define GF2X_MUL PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mul_comb

void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_add(DIGIT Res[], const DIGIT A[], const DIGIT B[], int nr);
void PQCLEAN_LEDAKEMLT52_CLEAN_right_bit_shift_n(int length, DIGIT in[], unsigned int amount);
void PQCLEAN_LEDAKEMLT52_CLEAN_left_bit_shift_n(int length, DIGIT in[], unsigned int amount);
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_add(DIGIT Res[], const DIGIT A[], const DIGIT B[], int nr);
void PQCLEAN_LEDAKEMLT12_LEAKTIME_right_bit_shift_n(int length, DIGIT in[], unsigned int amount);
void PQCLEAN_LEDAKEMLT12_LEAKTIME_left_bit_shift_n(int length, DIGIT in[], unsigned int amount);
void GF2X_MUL(int nr, DIGIT Res[], int na, const DIGIT A[], int nb, const DIGIT B[]);

#endif

crypto_kem/ledakemlt12/clean/gf2x_arith_mod_xPplusOne.c → crypto_kem/ledakemlt12/leaktime/gf2x_arith_mod_xPplusOne.c View File

@@ -4,14 +4,14 @@
#include <assert.h>
#include <string.h> // memcpy(...), memset(...)

void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_copy(DIGIT dest[], const DIGIT in[]) {
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_copy(DIGIT dest[], const DIGIT in[]) {
for (int i = NUM_DIGITS_GF2X_ELEMENT - 1; i >= 0; i--) {
dest[i] = in[i];
}
}

/* returns the coefficient of the x^exponent term as the LSB of a digit */
DIGIT PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_get_coeff(const DIGIT poly[], unsigned int exponent) {
DIGIT PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_get_coeff(const DIGIT poly[], unsigned int exponent) {
unsigned int straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent;
unsigned int digitIdx = straightIdx / DIGIT_SIZE_b;
unsigned int inDigitIdx = straightIdx % DIGIT_SIZE_b;
@@ -19,7 +19,7 @@ DIGIT PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_get_coeff(const DIGIT poly[], unsigned int
}

/* sets the coefficient of the x^exponent term as the LSB of a digit */
void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_set_coeff(DIGIT poly[], unsigned int exponent, DIGIT value) {
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_set_coeff(DIGIT poly[], unsigned int exponent, DIGIT value) {
unsigned int straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent;
unsigned int digitIdx = straightIdx / DIGIT_SIZE_b;
unsigned int inDigitIdx = straightIdx % DIGIT_SIZE_b;
@@ -31,7 +31,7 @@ void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_set_coeff(DIGIT poly[], unsigned int exponen
}

/* toggles (flips) the coefficient of the x^exponent term as the LSB of a digit */
void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_toggle_coeff(DIGIT poly[], unsigned int exponent) {
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_toggle_coeff(DIGIT poly[], unsigned int exponent) {
unsigned int straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent;
unsigned int digitIdx = straightIdx / DIGIT_SIZE_b;
unsigned int inDigitIdx = straightIdx % DIGIT_SIZE_b;
@@ -51,7 +51,7 @@ static int popcount_uint64t(uint64_t x) {
}

/* population count for a single polynomial */
int PQCLEAN_LEDAKEMLT12_CLEAN_population_count(DIGIT *poly) {
int PQCLEAN_LEDAKEMLT12_LEAKTIME_population_count(DIGIT *poly) {
int ret = 0;
for (int i = NUM_DIGITS_GF2X_ELEMENT - 1; i >= 0; i--) {
ret += popcount_uint64t(poly[i]);
@@ -59,8 +59,8 @@ int PQCLEAN_LEDAKEMLT12_CLEAN_population_count(DIGIT *poly) {
return ret;
}

void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_add(DIGIT Res[], const DIGIT A[], const DIGIT B[]) {
PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_add(Res, A, B, NUM_DIGITS_GF2X_ELEMENT);
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_add(DIGIT Res[], const DIGIT A[], const DIGIT B[]) {
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_add(Res, A, B, NUM_DIGITS_GF2X_ELEMENT);
}

static int partition(POSITION_T arr[], int lo, int hi) {
@@ -82,7 +82,7 @@ static int partition(POSITION_T arr[], int lo, int hi) {
return i + 1;
}

void PQCLEAN_LEDAKEMLT12_CLEAN_quicksort_sparse(POSITION_T Res[]) {
void PQCLEAN_LEDAKEMLT12_LEAKTIME_quicksort_sparse(POSITION_T Res[]) {
int stack[DV * M];
int hi, lo, pivot, tos = -1;
stack[++tos] = 0;
@@ -175,7 +175,7 @@ static void left_DIGIT_shift_n(unsigned int length, DIGIT in[], unsigned int amo
/* may shift by an arbitrary amount*/
static void left_bit_shift_wide_n(const int length, DIGIT in[], unsigned int amount) {
left_DIGIT_shift_n(length, in, amount / DIGIT_SIZE_b);
PQCLEAN_LEDAKEMLT12_CLEAN_left_bit_shift_n(length, in, amount % DIGIT_SIZE_b);
PQCLEAN_LEDAKEMLT12_LEAKTIME_left_bit_shift_n(length, in, amount % DIGIT_SIZE_b);
}

/* Hackers delight, reverses a uint64_t */
@@ -193,7 +193,7 @@ static DIGIT reverse_digit(DIGIT x) {
return x;
}

void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_transpose_in_place(DIGIT A[]) {
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_transpose_in_place(DIGIT A[]) {
/* it keeps the lsb in the same position and
* inverts the sequence of the remaining bits */

@@ -214,7 +214,7 @@ void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_transpose_in_place(DIGIT A[]) {
A[NUM_DIGITS_GF2X_ELEMENT / 2] = reverse_digit(A[NUM_DIGITS_GF2X_ELEMENT / 2]);

if (slack_bits_amount) {
PQCLEAN_LEDAKEMLT12_CLEAN_right_bit_shift_n(NUM_DIGITS_GF2X_ELEMENT, A, slack_bits_amount);
PQCLEAN_LEDAKEMLT12_LEAKTIME_right_bit_shift_n(NUM_DIGITS_GF2X_ELEMENT, A, slack_bits_amount);
}
A[NUM_DIGITS_GF2X_ELEMENT - 1] = (A[NUM_DIGITS_GF2X_ELEMENT - 1] & (~mask)) | a00;
}
@@ -265,7 +265,7 @@ static void gf2x_swap(const int length, DIGIT f[], DIGIT s[]) {
* (Chapter 11 -- Algorithm 11.44 -- pag 223)
*
*/
int PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_inverse(DIGIT out[], const DIGIT in[]) { /* in^{-1} mod x^P-1 */
int PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_inverse(DIGIT out[], const DIGIT in[]) { /* in^{-1} mod x^P-1 */

int i;
int delta = 0;
@@ -299,8 +299,8 @@ int PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_inverse(DIGIT out[], const DIGIT in[]) {
delta += 1;
} else {
if ( (s[0] & mask) != 0) {
PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_add(s, s, f, NUM_DIGITS_GF2X_MODULUS);
PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_add(v, v, u);
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_add(s, s, f, NUM_DIGITS_GF2X_MODULUS);
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_add(v, v, u);
}
left_bit_shift(NUM_DIGITS_GF2X_MODULUS, s);
if ( delta == 0 ) {
@@ -322,7 +322,7 @@ int PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_inverse(DIGIT out[], const DIGIT in[]) {
return (delta == 0);
}

void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_mul(DIGIT Res[], const DIGIT A[], const DIGIT B[]) {
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_mul(DIGIT Res[], const DIGIT A[], const DIGIT B[]) {

DIGIT aux[2 * NUM_DIGITS_GF2X_ELEMENT];
GF2X_MUL(2 * NUM_DIGITS_GF2X_ELEMENT, aux,
@@ -334,7 +334,7 @@ void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_mul(DIGIT Res[], const DIGIT A[], const

/*PRE: the representation of the sparse coefficients is sorted in increasing
order of the coefficients themselves */
void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_mul_dense_to_sparse(
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_mul_dense_to_sparse(
DIGIT Res[],
const DIGIT dense[],
POSITION_T sparse[], unsigned int nPos) {
@@ -352,7 +352,7 @@ void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_mul_dense_to_sparse(
for (unsigned int i = 1; i < nPos; i++) {
if (sparse[i] != INVALID_POS_VALUE) {
left_bit_shift_wide_n(2 * NUM_DIGITS_GF2X_ELEMENT, aux, (sparse[i] - sparse[i - 1]) );
PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_add(resDouble, aux, resDouble, 2 * NUM_DIGITS_GF2X_ELEMENT);
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_add(resDouble, aux, resDouble, 2 * NUM_DIGITS_GF2X_ELEMENT);
}
}
}
@@ -361,7 +361,7 @@ void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_mul_dense_to_sparse(

}

void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_transpose_in_place_sparse(int sizeA, POSITION_T A[]) {
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_transpose_in_place_sparse(int sizeA, POSITION_T A[]) {

POSITION_T t;
int i = 0, j;
@@ -383,7 +383,7 @@ void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_transpose_in_place_sparse(int sizeA, POSITIO

}

void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_mul_sparse(size_t sizeR, POSITION_T Res[],
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_mul_sparse(size_t sizeR, POSITION_T Res[],
size_t sizeA, const POSITION_T A[],
size_t sizeB, const POSITION_T B[]) {

@@ -406,7 +406,7 @@ void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_mul_sparse(size_t sizeR, POSITION_T Res[
Res[lastFilledPos] = INVALID_POS_VALUE;
lastFilledPos++;
}
PQCLEAN_LEDAKEMLT12_CLEAN_quicksort_sparse(Res);
PQCLEAN_LEDAKEMLT12_LEAKTIME_quicksort_sparse(Res);
/* eliminate duplicates */
POSITION_T lastReadPos = Res[0];
int duplicateCount;
@@ -433,7 +433,7 @@ void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_mul_sparse(size_t sizeR, POSITION_T Res[

/* the implementation is safe even in case A or B alias with the result */
/* PRE: A and B should be sorted and have INVALID_POS_VALUE at the end */
void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_add_sparse(
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_add_sparse(
int sizeR, POSITION_T Res[],
int sizeA, const POSITION_T A[],
int sizeB, const POSITION_T B[]) {
@@ -492,7 +492,7 @@ static uint32_t rand_range(const unsigned int n, const int logn, AES_XOF_struct
uint32_t mask = ( (uint32_t)1 << logn) - 1;

do {
PQCLEAN_LEDAKEMLT12_CLEAN_seedexpander(seed_expander_ctx, rnd_char_buffer, required_rnd_bytes);
PQCLEAN_LEDAKEMLT12_LEAKTIME_seedexpander(seed_expander_ctx, rnd_char_buffer, required_rnd_bytes);
/* obtain an endianness independent representation of the generated random
bytes into an unsigned integer */
rnd_value = ((uint32_t)rnd_char_buffer[3] << 24) +
@@ -507,7 +507,7 @@ static uint32_t rand_range(const unsigned int n, const int logn, AES_XOF_struct

/* Obtains fresh randomness and seed-expands it until all the required positions
* for the '1's in the circulant block are obtained */
void PQCLEAN_LEDAKEMLT12_CLEAN_rand_circulant_sparse_block(POSITION_T *pos_ones,
void PQCLEAN_LEDAKEMLT12_LEAKTIME_rand_circulant_sparse_block(POSITION_T *pos_ones,
int countOnes,
AES_XOF_struct *seed_expander_ctx) {

@@ -532,7 +532,7 @@ void PQCLEAN_LEDAKEMLT12_CLEAN_rand_circulant_sparse_block(POSITION_T *pos_ones,
}

/* Returns random weight-t circulant block */
void PQCLEAN_LEDAKEMLT12_CLEAN_rand_circulant_blocks_sequence(
void PQCLEAN_LEDAKEMLT12_LEAKTIME_rand_circulant_blocks_sequence(
DIGIT sequence[N0 * NUM_DIGITS_GF2X_ELEMENT],
AES_XOF_struct *seed_expander_ctx) {

@@ -558,13 +558,13 @@ void PQCLEAN_LEDAKEMLT12_CLEAN_rand_circulant_blocks_sequence(
for (int j = 0; j < counter; j++) {
polyIndex = rndPos[j] / P;
exponent = rndPos[j] % P;
PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_set_coeff( sequence + NUM_DIGITS_GF2X_ELEMENT * polyIndex, exponent,
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_set_coeff( sequence + NUM_DIGITS_GF2X_ELEMENT * polyIndex, exponent,
( (DIGIT) 1));
}

}

void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_tobytes(uint8_t *bytes, const DIGIT *poly) {
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_tobytes(uint8_t *bytes, const DIGIT *poly) {
size_t i, j;
for (i = 0; i < NUM_DIGITS_GF2X_ELEMENT; i++) {
for (j = 0; j < DIGIT_SIZE_B; j++) {
@@ -573,7 +573,7 @@ void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_tobytes(uint8_t *bytes, const DIGIT *poly) {
}
}

void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_frombytes(DIGIT *poly, const uint8_t *poly_bytes) {
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_frombytes(DIGIT *poly, const uint8_t *poly_bytes) {
size_t i, j;
for (i = 0; i < NUM_DIGITS_GF2X_ELEMENT; i++) {
poly[i] = (DIGIT) 0;

+ 38
- 0
crypto_kem/ledakemlt12/leaktime/gf2x_arith_mod_xPplusOne.h View File

@@ -0,0 +1,38 @@
#ifndef GF2X_ARITH_MOD_XPLUSONE_H
#define GF2X_ARITH_MOD_XPLUSONE_H

#include "qc_ldpc_parameters.h"

#include "gf2x_arith.h"
#include "rng.h"

#define NUM_BITS_GF2X_ELEMENT (P) // 52147
#define NUM_DIGITS_GF2X_ELEMENT ((P+DIGIT_SIZE_b-1)/DIGIT_SIZE_b)
#define MSb_POSITION_IN_MSB_DIGIT_OF_ELEMENT ((P % DIGIT_SIZE_b) ? (P % DIGIT_SIZE_b)-1 : DIGIT_SIZE_b-1)
#define NUM_BITS_GF2X_MODULUS (P+1)
#define NUM_DIGITS_GF2X_MODULUS ((P+1+DIGIT_SIZE_b-1)/DIGIT_SIZE_b)
#define MSb_POSITION_IN_MSB_DIGIT_OF_MODULUS (P-DIGIT_SIZE_b*(NUM_DIGITS_GF2X_MODULUS-1))
#define INVALID_POS_VALUE (P)
#define P_BITS (16) // log_2(p) = 15.6703

void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_copy(DIGIT dest[], const DIGIT in[]);
DIGIT PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_get_coeff(const DIGIT poly[], unsigned int exponent);
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_set_coeff(DIGIT poly[], unsigned int exponent, DIGIT value);
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_toggle_coeff(DIGIT poly[], unsigned int exponent);
int PQCLEAN_LEDAKEMLT12_LEAKTIME_population_count(DIGIT *poly);
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_add(DIGIT Res[], const DIGIT A[], const DIGIT B[]);
void PQCLEAN_LEDAKEMLT12_LEAKTIME_quicksort_sparse(POSITION_T Res[]);
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_mul(DIGIT Res[], const DIGIT A[], const DIGIT B[]);
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_transpose_in_place(DIGIT A[]);
void PQCLEAN_LEDAKEMLT12_LEAKTIME_rand_circulant_sparse_block(POSITION_T *pos_ones, int countOnes, AES_XOF_struct *seed_expander_ctx);
void PQCLEAN_LEDAKEMLT12_LEAKTIME_rand_circulant_blocks_sequence(DIGIT *sequence, AES_XOF_struct *seed_expander_ctx);
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_add_sparse(int sizeR, POSITION_T Res[], int sizeA, const POSITION_T A[], int sizeB, const POSITION_T B[]);
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_transpose_in_place_sparse(int sizeA, POSITION_T A[]);
int PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_inverse(DIGIT out[], const DIGIT in[]);
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_mul_sparse(size_t sizeR, POSITION_T Res[], size_t sizeA, const POSITION_T A[], size_t sizeB, const POSITION_T B[]);
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_mul_dense_to_sparse(DIGIT Res[], const DIGIT dense[], POSITION_T sparse[], unsigned int nPos);
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_tobytes(uint8_t *bytes, const DIGIT *poly);
void PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_frombytes(DIGIT *poly, const uint8_t *poly_bytes);


#endif

crypto_kem/ledakemlt32/clean/kem.c → crypto_kem/ledakemlt12/leaktime/kem.c View File

@@ -8,43 +8,43 @@
static void pack_pk(uint8_t *pk_bytes, publicKeyNiederreiter_t *pk) {
size_t i;
for (i = 0; i < N0 - 1; i++) {
PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_tobytes(pk_bytes + i * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B,
pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT);
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_tobytes(pk_bytes + i * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B,
pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT);
}
}

static void unpack_pk(publicKeyNiederreiter_t *pk, const uint8_t *pk_bytes) {
size_t i;
for (i = 0; i < N0 - 1; i++) {
PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_frombytes(pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT,
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_frombytes(pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT,
pk_bytes + i * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B);
}
}

static void pack_ct(uint8_t *sk_bytes, DIGIT *ct) {
PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_tobytes(sk_bytes, ct);
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_tobytes(sk_bytes, ct);
}

static void unpack_ct(DIGIT *ct, const uint8_t *ct_bytes) {
PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_frombytes(ct, ct_bytes);
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_frombytes(ct, ct_bytes);
}

static void pack_error(uint8_t *error_bytes, DIGIT *error_digits) {
size_t i;
for (i = 0; i < N0; i++) {
PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_tobytes(error_bytes + i * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B,
error_digits + i * NUM_DIGITS_GF2X_ELEMENT);
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_tobytes(error_bytes + i * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B,
error_digits + i * NUM_DIGITS_GF2X_ELEMENT);
}
}

/* Generates a keypair - pk is the public key and sk is the secret key. */
int PQCLEAN_LEDAKEMLT32_CLEAN_crypto_kem_keypair(unsigned char *pk, unsigned char *sk) {
int PQCLEAN_LEDAKEMLT12_LEAKTIME_crypto_kem_keypair(unsigned char *pk, unsigned char *sk) {
AES_XOF_struct niederreiter_keys_expander;
publicKeyNiederreiter_t pk_nie;

randombytes(((privateKeyNiederreiter_t *)sk)->prng_seed, TRNG_BYTE_LENGTH);
PQCLEAN_LEDAKEMLT32_CLEAN_seedexpander_from_trng(&niederreiter_keys_expander, ((privateKeyNiederreiter_t *)sk)->prng_seed);
PQCLEAN_LEDAKEMLT32_CLEAN_niederreiter_keygen(&pk_nie, (privateKeyNiederreiter_t *) sk, &niederreiter_keys_expander);
PQCLEAN_LEDAKEMLT12_LEAKTIME_seedexpander_from_trng(&niederreiter_keys_expander, ((privateKeyNiederreiter_t *)sk)->prng_seed);
PQCLEAN_LEDAKEMLT12_LEAKTIME_niederreiter_keygen(&pk_nie, (privateKeyNiederreiter_t *) sk, &niederreiter_keys_expander);

pack_pk(pk, &pk_nie);

@@ -53,7 +53,7 @@ int PQCLEAN_LEDAKEMLT32_CLEAN_crypto_kem_keypair(unsigned char *pk, unsigned cha

/* Encrypt - pk is the public key, ct is a key encapsulation message
(ciphertext), ss is the shared secret.*/
int PQCLEAN_LEDAKEMLT32_CLEAN_crypto_kem_enc(unsigned char *ct, unsigned char *ss, const unsigned char *pk) {
int PQCLEAN_LEDAKEMLT12_LEAKTIME_crypto_kem_enc(unsigned char *ct, unsigned char *ss, const unsigned char *pk) {
AES_XOF_struct niederreiter_encap_key_expander;
unsigned char encapsulated_key_seed[TRNG_BYTE_LENGTH];
DIGIT error_vector[N0 * NUM_DIGITS_GF2X_ELEMENT];
@@ -64,11 +64,11 @@ int PQCLEAN_LEDAKEMLT32_CLEAN_crypto_kem_enc(unsigned char *ct, unsigned char *s
randombytes(encapsulated_key_seed, TRNG_BYTE_LENGTH);
unpack_pk(&pk_nie, pk);

PQCLEAN_LEDAKEMLT32_CLEAN_seedexpander_from_trng(&niederreiter_encap_key_expander, encapsulated_key_seed);
PQCLEAN_LEDAKEMLT32_CLEAN_rand_circulant_blocks_sequence(error_vector, &niederreiter_encap_key_expander);
PQCLEAN_LEDAKEMLT12_LEAKTIME_seedexpander_from_trng(&niederreiter_encap_key_expander, encapsulated_key_seed);
PQCLEAN_LEDAKEMLT12_LEAKTIME_rand_circulant_blocks_sequence(error_vector, &niederreiter_encap_key_expander);
pack_error(error_bytes, error_vector);
HASH_FUNCTION(ss, error_bytes, (N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B));
PQCLEAN_LEDAKEMLT32_CLEAN_niederreiter_encrypt(syndrome, &pk_nie, error_vector);
PQCLEAN_LEDAKEMLT12_LEAKTIME_niederreiter_encrypt(syndrome, &pk_nie, error_vector);

pack_ct(ct, syndrome);

@@ -78,13 +78,13 @@ int PQCLEAN_LEDAKEMLT32_CLEAN_crypto_kem_enc(unsigned char *ct, unsigned char *s

/* Decrypt - ct is a key encapsulation message (ciphertext), sk is the private
key, ss is the shared secret */
int PQCLEAN_LEDAKEMLT32_CLEAN_crypto_kem_dec(unsigned char *ss, const unsigned char *ct, const unsigned char *sk) {
int PQCLEAN_LEDAKEMLT12_LEAKTIME_crypto_kem_dec(unsigned char *ss, const unsigned char *ct, const unsigned char *sk) {
DIGIT decoded_error_vector[N0 * NUM_DIGITS_GF2X_ELEMENT];
uint8_t decoded_error_bytes[N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B];
DIGIT syndrome[NUM_DIGITS_GF2X_ELEMENT];

unpack_ct(syndrome, ct);
PQCLEAN_LEDAKEMLT32_CLEAN_niederreiter_decrypt(decoded_error_vector, (privateKeyNiederreiter_t *)sk, syndrome);
PQCLEAN_LEDAKEMLT12_LEAKTIME_niederreiter_decrypt(decoded_error_vector, (privateKeyNiederreiter_t *)sk, syndrome);
pack_error(decoded_error_bytes, decoded_error_vector);
HASH_FUNCTION(ss, decoded_error_bytes, (N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B));


crypto_kem/ledakemlt52/clean/niederreiter.c → crypto_kem/ledakemlt12/leaktime/niederreiter.c View File

@@ -8,7 +8,7 @@

#include <string.h>

void PQCLEAN_LEDAKEMLT52_CLEAN_niederreiter_keygen(publicKeyNiederreiter_t *pk, privateKeyNiederreiter_t *sk, AES_XOF_struct *keys_expander) {
void PQCLEAN_LEDAKEMLT12_LEAKTIME_niederreiter_keygen(publicKeyNiederreiter_t *pk, privateKeyNiederreiter_t *sk, AES_XOF_struct *keys_expander) {

POSITION_T HPosOnes[N0][DV]; // sequence of N0 circ block matrices (p x p): Hi
POSITION_T HtrPosOnes[N0][DV]; // Sparse tranposed circulant H
@@ -23,8 +23,8 @@ void PQCLEAN_LEDAKEMLT52_CLEAN_niederreiter_keygen(publicKeyNiederreiter_t *pk,
sk->rejections = (int8_t) 0;

do {
PQCLEAN_LEDAKEMLT52_CLEAN_generateHPosOnes_HtrPosOnes(HPosOnes, HtrPosOnes, keys_expander);
PQCLEAN_LEDAKEMLT52_CLEAN_generateQsparse(QPosOnes, keys_expander);
PQCLEAN_LEDAKEMLT12_LEAKTIME_generateHPosOnes_HtrPosOnes(HPosOnes, HtrPosOnes, keys_expander);
PQCLEAN_LEDAKEMLT12_LEAKTIME_generateQsparse(QPosOnes, keys_expander);
for (int i = 0; i < N0; i++) {
for (int j = 0; j < DV * M; j++) {
LPosOnes[i][j] = INVALID_POS_VALUE;
@@ -34,10 +34,10 @@ void PQCLEAN_LEDAKEMLT52_CLEAN_niederreiter_keygen(publicKeyNiederreiter_t *pk,
memset(processedQOnes, 0x00, sizeof(processedQOnes));
for (int colQ = 0; colQ < N0; colQ++) {
for (int i = 0; i < N0; i++) {
PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_mul_sparse(DV * M, auxPosOnes,
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_mul_sparse(DV * M, auxPosOnes,
DV, HPosOnes[i],
qBlockWeights[i][colQ], QPosOnes[i] + processedQOnes[i]);
PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_add_sparse(DV * M, LPosOnes[colQ],
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_add_sparse(DV * M, LPosOnes[colQ],
DV * M, LPosOnes[colQ],
DV * M, auxPosOnes);
processedQOnes[i] += qBlockWeights[i][colQ];
@@ -49,7 +49,7 @@ void PQCLEAN_LEDAKEMLT52_CLEAN_niederreiter_keygen(publicKeyNiederreiter_t *pk,
}
sk->rejections = sk->rejections + 1;
if (is_L_full) {
threshold = PQCLEAN_LEDAKEMLT52_CLEAN_DFR_test(LPosOnes);
threshold = PQCLEAN_LEDAKEMLT12_LEAKTIME_DFR_test(LPosOnes);
}
} while (!is_L_full || threshold == DFR_TEST_FAIL);
sk->rejections = sk->rejections - 1;
@@ -58,41 +58,41 @@ void PQCLEAN_LEDAKEMLT52_CLEAN_niederreiter_keygen(publicKeyNiederreiter_t *pk,
memset(Ln0dense, 0x00, sizeof(Ln0dense));
for (int j = 0; j < DV * M; j++) {
if (LPosOnes[N0 - 1][j] != INVALID_POS_VALUE) {
PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_set_coeff(Ln0dense, LPosOnes[N0 - 1][j], 1);
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_set_coeff(Ln0dense, LPosOnes[N0 - 1][j], 1);
}
}

memset(Ln0Inv, 0x00, sizeof(Ln0Inv));
PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_inverse(Ln0Inv, Ln0dense);
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_inverse(Ln0Inv, Ln0dense);
for (int i = 0; i < N0 - 1; i++) {
PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_mul_dense_to_sparse(pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT,
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_mul_dense_to_sparse(pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT,
Ln0Inv,
LPosOnes[i],
DV * M);
}

for (int i = 0; i < N0 - 1; i++) {
PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_transpose_in_place(pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT);
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_transpose_in_place(pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT);
}
}


void PQCLEAN_LEDAKEMLT52_CLEAN_niederreiter_encrypt(DIGIT *syndrome, const publicKeyNiederreiter_t *pk, const DIGIT *err) {
void PQCLEAN_LEDAKEMLT12_LEAKTIME_niederreiter_encrypt(DIGIT *syndrome, const publicKeyNiederreiter_t *pk, const DIGIT *err) {
int i;
DIGIT saux[NUM_DIGITS_GF2X_ELEMENT];

memset(syndrome, 0x00, NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B);
for (i = 0; i < N0 - 1; i++) {
PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_mul(saux,
pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT,
err + i * NUM_DIGITS_GF2X_ELEMENT);
PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_add(syndrome, syndrome, saux);
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_mul(saux,
pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT,
err + i * NUM_DIGITS_GF2X_ELEMENT);
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_add(syndrome, syndrome, saux);
}
PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_add(syndrome, syndrome, err + (N0 - 1)*NUM_DIGITS_GF2X_ELEMENT);
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_add(syndrome, syndrome, err + (N0 - 1)*NUM_DIGITS_GF2X_ELEMENT);
}


int PQCLEAN_LEDAKEMLT52_CLEAN_niederreiter_decrypt(DIGIT *err, const privateKeyNiederreiter_t *sk, const DIGIT *syndrome) {
int PQCLEAN_LEDAKEMLT12_LEAKTIME_niederreiter_decrypt(DIGIT *err, const privateKeyNiederreiter_t *sk, const DIGIT *syndrome) {
AES_XOF_struct niederreiter_decrypt_expander;
POSITION_T HPosOnes[N0][DV];
POSITION_T HtrPosOnes[N0][DV];
@@ -110,11 +110,11 @@ int PQCLEAN_LEDAKEMLT52_CLEAN_niederreiter_decrypt(DIGIT *err, const privateKeyN
int currQoneIdx, endQblockIdx;
int decryptOk, err_weight;

PQCLEAN_LEDAKEMLT52_CLEAN_seedexpander_from_trng(&niederreiter_decrypt_expander, sk->prng_seed);
PQCLEAN_LEDAKEMLT12_LEAKTIME_seedexpander_from_trng(&niederreiter_decrypt_expander, sk->prng_seed);

do {
PQCLEAN_LEDAKEMLT52_CLEAN_generateHPosOnes_HtrPosOnes(HPosOnes, HtrPosOnes, &niederreiter_decrypt_expander);
PQCLEAN_LEDAKEMLT52_CLEAN_generateQsparse(QPosOnes, &niederreiter_decrypt_expander);
PQCLEAN_LEDAKEMLT12_LEAKTIME_generateHPosOnes_HtrPosOnes(HPosOnes, HtrPosOnes, &niederreiter_decrypt_expander);
PQCLEAN_LEDAKEMLT12_LEAKTIME_generateQsparse(QPosOnes, &niederreiter_decrypt_expander);
for (int i = 0; i < N0; i++) {
for (int j = 0; j < DV * M; j++) {
LPosOnes[i][j] = INVALID_POS_VALUE;
@@ -124,10 +124,10 @@ int PQCLEAN_LEDAKEMLT52_CLEAN_niederreiter_decrypt(DIGIT *err, const privateKeyN
memset(processedQOnes, 0x00, sizeof(processedQOnes));
for (int colQ = 0; colQ < N0; colQ++) {
for (int i = 0; i < N0; i++) {
PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_mul_sparse(DV * M, auxPosOnes,
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_mul_sparse(DV * M, auxPosOnes,
DV, HPosOnes[i],
qBlockWeights[i][colQ], QPosOnes[i] + processedQOnes[i]);
PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_add_sparse(DV * M, LPosOnes[colQ],
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_add_sparse(DV * M, LPosOnes[colQ],
DV * M, LPosOnes[colQ],
DV * M, auxPosOnes);
processedQOnes[i] += qBlockWeights[i][colQ];
@@ -156,31 +156,31 @@ int PQCLEAN_LEDAKEMLT52_CLEAN_niederreiter_decrypt(DIGIT *err, const privateKeyN
}

for (int i = 0; i < N0; i++) {
PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_mul_sparse(DV * M, auxSparse,
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_mul_sparse(DV * M, auxSparse,
DV, HPosOnes[i],
qBlockWeights[i][N0 - 1], &QPosOnes[i][ M - qBlockWeights[i][N0 - 1]]);
PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_add_sparse(DV * M, Ln0trSparse,
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_add_sparse(DV * M, Ln0trSparse,
DV * M, Ln0trSparse,
DV * M, auxSparse);
}

PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_transpose_in_place_sparse(DV * M, Ln0trSparse);
PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_mul_dense_to_sparse(privateSyndrome, syndrome, Ln0trSparse, DV * M);
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_transpose_in_place_sparse(DV * M, Ln0trSparse);
PQCLEAN_LEDAKEMLT12_LEAKTIME_gf2x_mod_mul_dense_to_sparse(privateSyndrome, syndrome, Ln0trSparse, DV * M);

/* prepare mockup error vector in case a decoding failure occurs */
memset(mockup_error_vector, 0x00, N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B);
memcpy(mockup_error_vector, syndrome, NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B);
PQCLEAN_LEDAKEMLT52_CLEAN_seedexpander(&niederreiter_decrypt_expander,
((unsigned char *) mockup_error_vector) + (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B),
TRNG_BYTE_LENGTH);
PQCLEAN_LEDAKEMLT12_LEAKTIME_seedexpander(&niederreiter_decrypt_expander,
((unsigned char *) mockup_error_vector) + (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B),
TRNG_BYTE_LENGTH);

memset(err, 0x00, N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B);
decryptOk = PQCLEAN_LEDAKEMLT52_CLEAN_bf_decoding(err, (const POSITION_T (*)[DV]) HtrPosOnes,
decryptOk = PQCLEAN_LEDAKEMLT12_LEAKTIME_bf_decoding(err, (const POSITION_T (*)[DV]) HtrPosOnes,
(const POSITION_T (*)[M]) QtrPosOnes, privateSyndrome, sk->threshold);

err_weight = 0;
for (int i = 0 ; i < N0; i++) {
err_weight += PQCLEAN_LEDAKEMLT52_CLEAN_population_count(err + (NUM_DIGITS_GF2X_ELEMENT * i));
err_weight += PQCLEAN_LEDAKEMLT12_LEAKTIME_population_count(err + (NUM_DIGITS_GF2X_ELEMENT * i));
}
decryptOk = decryptOk && (err_weight == NUM_ERRORS_T);


crypto_kem/ledakemlt12/clean/niederreiter.h → crypto_kem/ledakemlt12/leaktime/niederreiter.h View File

@@ -21,9 +21,9 @@ typedef struct {
// with P coefficients.
} publicKeyNiederreiter_t;

void PQCLEAN_LEDAKEMLT12_CLEAN_niederreiter_keygen(publicKeyNiederreiter_t *pk, privateKeyNiederreiter_t *sk, AES_XOF_struct *keys_expander);
void PQCLEAN_LEDAKEMLT12_CLEAN_niederreiter_encrypt(DIGIT syndrome[], const publicKeyNiederreiter_t *pk, const DIGIT *err);
int PQCLEAN_LEDAKEMLT12_CLEAN_niederreiter_decrypt(DIGIT *err, const privateKeyNiederreiter_t *sk, const DIGIT *syndrome);
void PQCLEAN_LEDAKEMLT12_LEAKTIME_niederreiter_keygen(publicKeyNiederreiter_t *pk, privateKeyNiederreiter_t *sk, AES_XOF_struct *keys_expander);
void PQCLEAN_LEDAKEMLT12_LEAKTIME_niederreiter_encrypt(DIGIT syndrome[], const publicKeyNiederreiter_t *pk, const DIGIT *err);
int PQCLEAN_LEDAKEMLT12_LEAKTIME_niederreiter_decrypt(DIGIT *err, const privateKeyNiederreiter_t *sk, const DIGIT *syndrome);


#endif

crypto_kem/ledakemlt12/clean/qc_ldpc_parameters.h → crypto_kem/ledakemlt12/leaktime/qc_ldpc_parameters.h View File


crypto_kem/ledakemlt12/clean/rng.c → crypto_kem/ledakemlt12/leaktime/rng.c View File

@@ -37,7 +37,7 @@ static void seedexpander_init(AES_XOF_struct *ctx,
memset(ctx->buffer, 0x00, 16);
}

void PQCLEAN_LEDAKEMLT12_CLEAN_seedexpander_from_trng(AES_XOF_struct *ctx,
void PQCLEAN_LEDAKEMLT12_LEAKTIME_seedexpander_from_trng(AES_XOF_struct *ctx,
const unsigned char *trng_entropy
/* TRNG_BYTE_LENGTH wide buffer */) {

@@ -61,7 +61,7 @@ void PQCLEAN_LEDAKEMLT12_CLEAN_seedexpander_from_trng(AES_XOF_struct *ctx,
x - returns the XOF data
xlen - number of bytes to return
*/
int PQCLEAN_LEDAKEMLT12_CLEAN_seedexpander(AES_XOF_struct *ctx, unsigned char *x, size_t xlen) {
int PQCLEAN_LEDAKEMLT12_LEAKTIME_seedexpander(AES_XOF_struct *ctx, unsigned char *x, size_t xlen) {
size_t offset;
aes256ctx ctx256;


crypto_kem/ledakemlt12/clean/rng.h → crypto_kem/ledakemlt12/leaktime/rng.h View File

@@ -18,7 +18,7 @@ typedef struct {
unsigned char ctr[16];
} AES_XOF_struct;

int PQCLEAN_LEDAKEMLT12_CLEAN_seedexpander(AES_XOF_struct *ctx, unsigned char *x, size_t xlen);
void PQCLEAN_LEDAKEMLT12_CLEAN_seedexpander_from_trng(AES_XOF_struct *ctx, const unsigned char *trng_entropy);
int PQCLEAN_LEDAKEMLT12_LEAKTIME_seedexpander(AES_XOF_struct *ctx, unsigned char *x, size_t xlen);
void PQCLEAN_LEDAKEMLT12_LEAKTIME_seedexpander_from_trng(AES_XOF_struct *ctx, const unsigned char *trng_entropy);

#endif

+ 1
- 1
crypto_kem/ledakemlt32/META.yml View File

@@ -14,5 +14,5 @@ auxiliary-submitters:
- Gerardo Pelosi
- Paolo Santini
implementations:
- name: clean
- name: leaktime
version: 2.?

+ 0
- 11
crypto_kem/ledakemlt32/clean/H_Q_matrices_generation.h View File

@@ -1,11 +0,0 @@
#ifndef H_Q_MATRICES_GENERATION_H
#define H_Q_MATRICES_GENERATION_H

#include "gf2x_arith.h"
#include "qc_ldpc_parameters.h"
#include "rng.h"

void PQCLEAN_LEDAKEMLT32_CLEAN_generateHPosOnes_HtrPosOnes(POSITION_T HPosOnes[N0][DV], POSITION_T HtrPosOnes[N0][DV], AES_XOF_struct *niederreiter_keys_expander);
void PQCLEAN_LEDAKEMLT32_CLEAN_generateQsparse(POSITION_T pos_ones[N0][M], AES_XOF_struct *niederreiter_keys_expander);

#endif

+ 0
- 18
crypto_kem/ledakemlt32/clean/api.h View File

@@ -1,18 +0,0 @@
#ifndef PQCLEAN_LEDAKEMLT32_CLEAN_API_H
#define PQCLEAN_LEDAKEMLT32_CLEAN_API_H

#include <stdint.h>

#define PQCLEAN_LEDAKEMLT32_CLEAN_CRYPTO_SECRETKEYBYTES 34
#define PQCLEAN_LEDAKEMLT32_CLEAN_CRYPTO_PUBLICKEYBYTES 12032
#define PQCLEAN_LEDAKEMLT32_CLEAN_CRYPTO_CIPHERTEXTBYTES 12032
#define PQCLEAN_LEDAKEMLT32_CLEAN_CRYPTO_BYTES 48

#define PQCLEAN_LEDAKEMLT32_CLEAN_CRYPTO_ALGNAME "LEDAKEMLT32"

int PQCLEAN_LEDAKEMLT32_CLEAN_crypto_kem_keypair(uint8_t *pk, uint8_t *sk);
int PQCLEAN_LEDAKEMLT32_CLEAN_crypto_kem_enc(uint8_t *ct, uint8_t *ss, const uint8_t *pk);
int PQCLEAN_LEDAKEMLT32_CLEAN_crypto_kem_dec(uint8_t *ss, const uint8_t *ct, const uint8_t *sk);


#endif

+ 0
- 8
crypto_kem/ledakemlt32/clean/dfr_test.h View File

@@ -1,8 +0,0 @@
#ifndef DFR_TEST_H
#define DFR_TEST_H

#define DFR_TEST_FAIL (255)

uint8_t PQCLEAN_LEDAKEMLT32_CLEAN_DFR_test(POSITION_T LSparse[N0][DV * M]);

#endif

+ 0
- 38
crypto_kem/ledakemlt32/clean/gf2x_arith_mod_xPplusOne.h View File

@@ -1,38 +0,0 @@
#ifndef GF2X_ARITH_MOD_XPLUSONE_H
#define GF2X_ARITH_MOD_XPLUSONE_H

#include "qc_ldpc_parameters.h"

#include "gf2x_arith.h"
#include "rng.h"

#define NUM_BITS_GF2X_ELEMENT (P) // 96221
#define NUM_DIGITS_GF2X_ELEMENT ((P+DIGIT_SIZE_b-1)/DIGIT_SIZE_b)
#define MSb_POSITION_IN_MSB_DIGIT_OF_ELEMENT ((P % DIGIT_SIZE_b) ? (P % DIGIT_SIZE_b)-1 : DIGIT_SIZE_b-1)
#define NUM_BITS_GF2X_MODULUS (P+1)
#define NUM_DIGITS_GF2X_MODULUS ((P+1+DIGIT_SIZE_b-1)/DIGIT_SIZE_b)
#define MSb_POSITION_IN_MSB_DIGIT_OF_MODULUS (P-DIGIT_SIZE_b*(NUM_DIGITS_GF2X_MODULUS-1))
#define INVALID_POS_VALUE (P)
#define P_BITS (17) // log_2(p) = 16.55406417

void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_copy(DIGIT dest[], const DIGIT in[]);
DIGIT PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_get_coeff(const DIGIT poly[], unsigned int exponent);
void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_set_coeff(DIGIT poly[], unsigned int exponent, DIGIT value);
void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_toggle_coeff(DIGIT poly[], unsigned int exponent);
int PQCLEAN_LEDAKEMLT32_CLEAN_population_count(DIGIT *poly);
void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_add(DIGIT Res[], const DIGIT A[], const DIGIT B[]);
void PQCLEAN_LEDAKEMLT32_CLEAN_quicksort_sparse(POSITION_T Res[]);
void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_mul(DIGIT Res[], const DIGIT A[], const DIGIT B[]);
void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_transpose_in_place(DIGIT A[]);
void PQCLEAN_LEDAKEMLT32_CLEAN_rand_circulant_sparse_block(POSITION_T *pos_ones, int countOnes, AES_XOF_struct *seed_expander_ctx);
void PQCLEAN_LEDAKEMLT32_CLEAN_rand_circulant_blocks_sequence(DIGIT *sequence, AES_XOF_struct *seed_expander_ctx);
void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_add_sparse(int sizeR, POSITION_T Res[], int sizeA, const POSITION_T A[], int sizeB, const POSITION_T B[]);
void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_transpose_in_place_sparse(int sizeA, POSITION_T A[]);
int PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_inverse(DIGIT out[], const DIGIT in[]);
void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_mul_sparse(size_t sizeR, POSITION_T Res[], size_t sizeA, const POSITION_T A[], size_t sizeB, const POSITION_T B[]);
void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_mul_dense_to_sparse(DIGIT Res[], const DIGIT dense[], POSITION_T sparse[], unsigned int nPos);
void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_tobytes(uint8_t *bytes, const DIGIT *poly);
void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_frombytes(DIGIT *poly, const uint8_t *poly_bytes);


#endif

crypto_kem/ledakemlt52/clean/H_Q_matrices_generation.c → crypto_kem/ledakemlt32/leaktime/H_Q_matrices_generation.c View File

@@ -1,13 +1,13 @@
#include "H_Q_matrices_generation.h"
#include "gf2x_arith_mod_xPplusOne.h"

void PQCLEAN_LEDAKEMLT52_CLEAN_generateHPosOnes_HtrPosOnes(
void PQCLEAN_LEDAKEMLT32_LEAKTIME_generateHPosOnes_HtrPosOnes(
POSITION_T HPosOnes[N0][DV],
POSITION_T HtrPosOnes[N0][DV],
AES_XOF_struct *keys_expander) {
for (int i = 0; i < N0; i++) {
/* Generate a random block of Htr */
PQCLEAN_LEDAKEMLT52_CLEAN_rand_circulant_sparse_block(&HtrPosOnes[i][0], DV, keys_expander);
PQCLEAN_LEDAKEMLT32_LEAKTIME_rand_circulant_sparse_block(&HtrPosOnes[i][0], DV, keys_expander);
}
for (int i = 0; i < N0; i++) {
/* Obtain directly the sparse representation of the block of H */
@@ -17,13 +17,13 @@ void PQCLEAN_LEDAKEMLT52_CLEAN_generateHPosOnes_HtrPosOnes(
}
}

void PQCLEAN_LEDAKEMLT52_CLEAN_generateQsparse(
void PQCLEAN_LEDAKEMLT32_LEAKTIME_generateQsparse(
POSITION_T pos_ones[N0][M],
AES_XOF_struct *keys_expander) {
for (int i = 0; i < N0; i++) {
int placed_ones = 0;
for (int j = 0; j < N0; j++) {
PQCLEAN_LEDAKEMLT52_CLEAN_rand_circulant_sparse_block(&pos_ones[i][placed_ones],
PQCLEAN_LEDAKEMLT32_LEAKTIME_rand_circulant_sparse_block(&pos_ones[i][placed_ones],
qBlockWeights[i][j],
keys_expander);
placed_ones += qBlockWeights[i][j];

+ 11
- 0
crypto_kem/ledakemlt32/leaktime/H_Q_matrices_generation.h View File

@@ -0,0 +1,11 @@
#ifndef H_Q_MATRICES_GENERATION_H
#define H_Q_MATRICES_GENERATION_H

#include "gf2x_arith.h"
#include "qc_ldpc_parameters.h"
#include "rng.h"

void PQCLEAN_LEDAKEMLT32_LEAKTIME_generateHPosOnes_HtrPosOnes(POSITION_T HPosOnes[N0][DV], POSITION_T HtrPosOnes[N0][DV], AES_XOF_struct *niederreiter_keys_expander);
void PQCLEAN_LEDAKEMLT32_LEAKTIME_generateQsparse(POSITION_T pos_ones[N0][M], AES_XOF_struct *niederreiter_keys_expander);

#endif

crypto_kem/ledakemlt32/clean/LICENSE → crypto_kem/ledakemlt32/leaktime/LICENSE View File


crypto_kem/ledakemlt32/clean/Makefile → crypto_kem/ledakemlt32/leaktime/Makefile View File

@@ -1,6 +1,6 @@
# This Makefile can be used with GNU Make or BSD Make

LIB=libledakemlt32_clean.a
LIB=libledakemlt32_leaktime.a
HEADERS=api.h bf_decoding.h dfr_test.h gf2x_arith_mod_xPplusOne.h \
gf2x_arith.h H_Q_matrices_generation.h \
niederreiter.h qc_ldpc_parameters.h rng.h

crypto_kem/ledakemlt52/clean/Makefile.Microsoft_nmake → crypto_kem/ledakemlt32/leaktime/Makefile.Microsoft_nmake View File

@@ -1,7 +1,7 @@
# This Makefile can be used with Microsoft Visual Studio's nmake using the command:
# nmake /f Makefile.Microsoft_nmake

LIBRARY=libledakemlt52_clean.lib
LIBRARY=libledakemlt32_leaktime.lib
OBJECTS=bf_decoding.obj dfr_test.obj gf2x_arith_mod_xPplusOne.obj gf2x_arith.obj H_Q_matrices_generation.obj kem.obj niederreiter.obj rng.obj

CFLAGS=/nologo /I ..\..\..\common /W4 /WX

+ 18
- 0
crypto_kem/ledakemlt32/leaktime/api.h View File

@@ -0,0 +1,18 @@
#ifndef PQCLEAN_LEDAKEMLT32_LEAKTIME_API_H
#define PQCLEAN_LEDAKEMLT32_LEAKTIME_API_H

#include <stdint.h>

#define PQCLEAN_LEDAKEMLT32_LEAKTIME_CRYPTO_SECRETKEYBYTES 34
#define PQCLEAN_LEDAKEMLT32_LEAKTIME_CRYPTO_PUBLICKEYBYTES 12032
#define PQCLEAN_LEDAKEMLT32_LEAKTIME_CRYPTO_CIPHERTEXTBYTES 12032
#define PQCLEAN_LEDAKEMLT32_LEAKTIME_CRYPTO_BYTES 48

#define PQCLEAN_LEDAKEMLT32_LEAKTIME_CRYPTO_ALGNAME "LEDAKEMLT32"

int PQCLEAN_LEDAKEMLT32_LEAKTIME_crypto_kem_keypair(uint8_t *pk, uint8_t *sk);
int PQCLEAN_LEDAKEMLT32_LEAKTIME_crypto_kem_enc(uint8_t *ct, uint8_t *ss, const uint8_t *pk);
int PQCLEAN_LEDAKEMLT32_LEAKTIME_crypto_kem_dec(uint8_t *ss, const uint8_t *ct, const uint8_t *sk);


#endif

crypto_kem/ledakemlt52/clean/bf_decoding.c → crypto_kem/ledakemlt32/leaktime/bf_decoding.c View File

@@ -4,7 +4,7 @@
#include <assert.h>
#include <string.h>

int PQCLEAN_LEDAKEMLT52_CLEAN_bf_decoding(DIGIT err[],
int PQCLEAN_LEDAKEMLT32_LEAKTIME_bf_decoding(DIGIT err[],
const POSITION_T HtrPosOnes[N0][DV],
const POSITION_T QtrPosOnes[N0][M],
DIGIT privateSyndrome[],
@@ -18,13 +18,13 @@ int PQCLEAN_LEDAKEMLT52_CLEAN_bf_decoding(DIGIT err[],
unsigned int corrt_syndrome_based;

do {
PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_copy(currSyndrome, privateSyndrome);
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_copy(currSyndrome, privateSyndrome);
memset(unsatParityChecks, 0x00, N0 * P * sizeof(uint8_t));
for (int i = 0; i < N0; i++) {
for (int valueIdx = 0; valueIdx < P; valueIdx++) {
for (int HtrOneIdx = 0; HtrOneIdx < DV; HtrOneIdx++) {
POSITION_T tmp = (HtrPosOnes[i][HtrOneIdx] + valueIdx) >= P ? (HtrPosOnes[i][HtrOneIdx] + valueIdx) - P : (HtrPosOnes[i][HtrOneIdx] + valueIdx);
if (PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_get_coeff(currSyndrome, tmp)) {
if (PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_get_coeff(currSyndrome, tmp)) {
unsatParityChecks[i * P + valueIdx]++;
}
}
@@ -54,13 +54,13 @@ int PQCLEAN_LEDAKEMLT52_CLEAN_bf_decoding(DIGIT err[],
}
/* Correlation based flipping */
if (correlation >= corrt_syndrome_based) {
PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_toggle_coeff(err + NUM_DIGITS_GF2X_ELEMENT * i, j);
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_toggle_coeff(err + NUM_DIGITS_GF2X_ELEMENT * i, j);
for (int v = 0; v < M; v++) {
POSITION_T syndromePosToFlip;
for (int HtrOneIdx = 0; HtrOneIdx < DV; HtrOneIdx++) {
syndromePosToFlip = (HtrPosOnes[currQBlkPos[v]][HtrOneIdx] + currQBitPos[v] );
syndromePosToFlip = syndromePosToFlip >= P ? syndromePosToFlip - P : syndromePosToFlip;
PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_toggle_coeff(privateSyndrome, syndromePosToFlip);
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_toggle_coeff(privateSyndrome, syndromePosToFlip);
}
} // end for v
} // end if

crypto_kem/ledakemlt32/clean/bf_decoding.h → crypto_kem/ledakemlt32/leaktime/bf_decoding.h View File

@@ -9,7 +9,7 @@
#define B0 (64)
#define T_BAR (5)

int PQCLEAN_LEDAKEMLT32_CLEAN_bf_decoding(DIGIT err[],
int PQCLEAN_LEDAKEMLT32_LEAKTIME_bf_decoding(DIGIT err[],
const POSITION_T HtrPosOnes[N0][DV],
const POSITION_T QtrPosOnes[N0][M],
DIGIT privateSyndrome[],

crypto_kem/ledakemlt12/clean/dfr_test.c → crypto_kem/ledakemlt32/leaktime/dfr_test.c View File

@@ -9,7 +9,7 @@
* computes the threshold for the second iteration of the decoder and returns this values
* (max DV * M), on failure it returns 255 >> DV * M */

uint8_t PQCLEAN_LEDAKEMLT12_CLEAN_DFR_test(POSITION_T LSparse[N0][DV * M]) {
uint8_t PQCLEAN_LEDAKEMLT32_LEAKTIME_DFR_test(POSITION_T LSparse[N0][DV * M]) {

POSITION_T LSparse_loc[N0][DV * M];
POSITION_T rotated_column[DV * M];
@@ -31,7 +31,7 @@ uint8_t PQCLEAN_LEDAKEMLT12_CLEAN_DFR_test(POSITION_T LSparse[N0][DV * M]) {
LSparse_loc[i][j] = (P - LSparse[i][j]);
}
}
PQCLEAN_LEDAKEMLT12_CLEAN_quicksort_sparse(LSparse_loc[i]);
PQCLEAN_LEDAKEMLT32_LEAKTIME_quicksort_sparse(LSparse_loc[i]);
}

for (int i = 0; i < N0; i++ ) {
@@ -41,7 +41,7 @@ uint8_t PQCLEAN_LEDAKEMLT12_CLEAN_DFR_test(POSITION_T LSparse[N0][DV * M]) {
for (int idxToRotate = 0; idxToRotate < (DV * M); idxToRotate++) {
rotated_column[idxToRotate] = (LSparse_loc[j][idxToRotate] + k) % P;
}
PQCLEAN_LEDAKEMLT12_CLEAN_quicksort_sparse(rotated_column);
PQCLEAN_LEDAKEMLT32_LEAKTIME_quicksort_sparse(rotated_column);
/* compute the intersection amount */
firstidx = 0, secondidx = 0;
intersectionval = 0;

+ 8
- 0
crypto_kem/ledakemlt32/leaktime/dfr_test.h View File

@@ -0,0 +1,8 @@
#ifndef DFR_TEST_H
#define DFR_TEST_H

#define DFR_TEST_FAIL (255)

uint8_t PQCLEAN_LEDAKEMLT32_LEAKTIME_DFR_test(POSITION_T LSparse[N0][DV * M]);

#endif

crypto_kem/ledakemlt12/clean/gf2x_arith.c → crypto_kem/ledakemlt32/leaktime/gf2x_arith.c View File

@@ -3,14 +3,14 @@
#include <assert.h>
#include <string.h> // memset(...)

void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_add(DIGIT Res[], const DIGIT A[], const DIGIT B[], int nr) {
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_add(DIGIT Res[], const DIGIT A[], const DIGIT B[], int nr) {
for (int i = 0; i < nr; i++) {
Res[i] = A[i] ^ B[i];
}
}

/* PRE: MAX ALLOWED ROTATION AMOUNT : DIGIT_SIZE_b */
void PQCLEAN_LEDAKEMLT12_CLEAN_right_bit_shift_n(int length, DIGIT in[], unsigned int amount) {
void PQCLEAN_LEDAKEMLT32_LEAKTIME_right_bit_shift_n(int length, DIGIT in[], unsigned int amount) {
assert(amount < DIGIT_SIZE_b);
if ( amount == 0 ) {
return;
@@ -26,7 +26,7 @@ void PQCLEAN_LEDAKEMLT12_CLEAN_right_bit_shift_n(int length, DIGIT in[], unsigne
}

/* PRE: MAX ALLOWED ROTATION AMOUNT : DIGIT_SIZE_b */
void PQCLEAN_LEDAKEMLT12_CLEAN_left_bit_shift_n(int length, DIGIT in[], unsigned int amount) {
void PQCLEAN_LEDAKEMLT32_LEAKTIME_left_bit_shift_n(int length, DIGIT in[], unsigned int amount) {
assert(amount < DIGIT_SIZE_b);
if ( amount == 0 ) {
return;
@@ -41,7 +41,7 @@ void PQCLEAN_LEDAKEMLT12_CLEAN_left_bit_shift_n(int length, DIGIT in[], unsigned
in[j] <<= amount;
}

void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mul_comb(int nr, DIGIT Res[],
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mul_comb(int nr, DIGIT Res[],
int na, const DIGIT A[],
int nb, const DIGIT B[]) {
int i, j, k;

crypto_kem/ledakemlt32/clean/gf2x_arith.h → crypto_kem/ledakemlt32/leaktime/gf2x_arith.h View File

@@ -48,11 +48,11 @@ typedef uint64_t DIGIT;
#define DIGIT_SIZE_b (DIGIT_SIZE_B << 3)
#define POSITION_T uint32_t

#define GF2X_MUL PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mul_comb
#define GF2X_MUL PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mul_comb

void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_add(DIGIT Res[], const DIGIT A[], const DIGIT B[], int nr);
void PQCLEAN_LEDAKEMLT32_CLEAN_right_bit_shift_n(int length, DIGIT in[], unsigned int amount);
void PQCLEAN_LEDAKEMLT32_CLEAN_left_bit_shift_n(int length, DIGIT in[], unsigned int amount);
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_add(DIGIT Res[], const DIGIT A[], const DIGIT B[], int nr);
void PQCLEAN_LEDAKEMLT32_LEAKTIME_right_bit_shift_n(int length, DIGIT in[], unsigned int amount);
void PQCLEAN_LEDAKEMLT32_LEAKTIME_left_bit_shift_n(int length, DIGIT in[], unsigned int amount);
void GF2X_MUL(int nr, DIGIT Res[], int na, const DIGIT A[], int nb, const DIGIT B[]);

#endif

crypto_kem/ledakemlt32/clean/gf2x_arith_mod_xPplusOne.c → crypto_kem/ledakemlt32/leaktime/gf2x_arith_mod_xPplusOne.c View File

@@ -4,14 +4,14 @@
#include <assert.h>
#include <string.h> // memcpy(...), memset(...)

void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_copy(DIGIT dest[], const DIGIT in[]) {
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_copy(DIGIT dest[], const DIGIT in[]) {
for (int i = NUM_DIGITS_GF2X_ELEMENT - 1; i >= 0; i--) {
dest[i] = in[i];
}
}

/* returns the coefficient of the x^exponent term as the LSB of a digit */
DIGIT PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_get_coeff(const DIGIT poly[], unsigned int exponent) {
DIGIT PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_get_coeff(const DIGIT poly[], unsigned int exponent) {
unsigned int straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent;
unsigned int digitIdx = straightIdx / DIGIT_SIZE_b;
unsigned int inDigitIdx = straightIdx % DIGIT_SIZE_b;
@@ -19,7 +19,7 @@ DIGIT PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_get_coeff(const DIGIT poly[], unsigned int
}

/* sets the coefficient of the x^exponent term as the LSB of a digit */
void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_set_coeff(DIGIT poly[], unsigned int exponent, DIGIT value) {
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_set_coeff(DIGIT poly[], unsigned int exponent, DIGIT value) {
unsigned int straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent;
unsigned int digitIdx = straightIdx / DIGIT_SIZE_b;
unsigned int inDigitIdx = straightIdx % DIGIT_SIZE_b;
@@ -31,7 +31,7 @@ void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_set_coeff(DIGIT poly[], unsigned int exponen
}

/* toggles (flips) the coefficient of the x^exponent term as the LSB of a digit */
void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_toggle_coeff(DIGIT poly[], unsigned int exponent) {
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_toggle_coeff(DIGIT poly[], unsigned int exponent) {
unsigned int straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent;
unsigned int digitIdx = straightIdx / DIGIT_SIZE_b;
unsigned int inDigitIdx = straightIdx % DIGIT_SIZE_b;
@@ -51,7 +51,7 @@ static int popcount_uint64t(uint64_t x) {
}

/* population count for a single polynomial */
int PQCLEAN_LEDAKEMLT32_CLEAN_population_count(DIGIT *poly) {
int PQCLEAN_LEDAKEMLT32_LEAKTIME_population_count(DIGIT *poly) {
int ret = 0;
for (int i = NUM_DIGITS_GF2X_ELEMENT - 1; i >= 0; i--) {
ret += popcount_uint64t(poly[i]);
@@ -59,8 +59,8 @@ int PQCLEAN_LEDAKEMLT32_CLEAN_population_count(DIGIT *poly) {
return ret;
}

void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_add(DIGIT Res[], const DIGIT A[], const DIGIT B[]) {
PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_add(Res, A, B, NUM_DIGITS_GF2X_ELEMENT);
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_add(DIGIT Res[], const DIGIT A[], const DIGIT B[]) {
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_add(Res, A, B, NUM_DIGITS_GF2X_ELEMENT);
}

static int partition(POSITION_T arr[], int lo, int hi) {
@@ -82,7 +82,7 @@ static int partition(POSITION_T arr[], int lo, int hi) {
return i + 1;
}

void PQCLEAN_LEDAKEMLT32_CLEAN_quicksort_sparse(POSITION_T Res[]) {
void PQCLEAN_LEDAKEMLT32_LEAKTIME_quicksort_sparse(POSITION_T Res[]) {
int stack[DV * M];
int hi, lo, pivot, tos = -1;
stack[++tos] = 0;
@@ -175,7 +175,7 @@ static void left_DIGIT_shift_n(unsigned int length, DIGIT in[], unsigned int amo
/* may shift by an arbitrary amount*/
static void left_bit_shift_wide_n(const int length, DIGIT in[], unsigned int amount) {
left_DIGIT_shift_n(length, in, amount / DIGIT_SIZE_b);
PQCLEAN_LEDAKEMLT32_CLEAN_left_bit_shift_n(length, in, amount % DIGIT_SIZE_b);
PQCLEAN_LEDAKEMLT32_LEAKTIME_left_bit_shift_n(length, in, amount % DIGIT_SIZE_b);
}

/* Hackers delight, reverses a uint64_t */
@@ -193,7 +193,7 @@ static DIGIT reverse_digit(DIGIT x) {
return x;
}

void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_transpose_in_place(DIGIT A[]) {
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_transpose_in_place(DIGIT A[]) {
/* it keeps the lsb in the same position and
* inverts the sequence of the remaining bits */

@@ -214,7 +214,7 @@ void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_transpose_in_place(DIGIT A[]) {
// A[NUM_DIGITS_GF2X_ELEMENT / 2] = reverse_digit(A[NUM_DIGITS_GF2X_ELEMENT / 2]); // no middle digit

if (slack_bits_amount) {
PQCLEAN_LEDAKEMLT32_CLEAN_right_bit_shift_n(NUM_DIGITS_GF2X_ELEMENT, A, slack_bits_amount);
PQCLEAN_LEDAKEMLT32_LEAKTIME_right_bit_shift_n(NUM_DIGITS_GF2X_ELEMENT, A, slack_bits_amount);
}
A[NUM_DIGITS_GF2X_ELEMENT - 1] = (A[NUM_DIGITS_GF2X_ELEMENT - 1] & (~mask)) | a00;
}
@@ -265,7 +265,7 @@ static void gf2x_swap(const int length, DIGIT f[], DIGIT s[]) {
* (Chapter 11 -- Algorithm 11.44 -- pag 223)
*
*/
int PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_inverse(DIGIT out[], const DIGIT in[]) { /* in^{-1} mod x^P-1 */
int PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_inverse(DIGIT out[], const DIGIT in[]) { /* in^{-1} mod x^P-1 */

int i;
int delta = 0;
@@ -299,8 +299,8 @@ int PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_inverse(DIGIT out[], const DIGIT in[]) {
delta += 1;
} else {
if ( (s[0] & mask) != 0) {
PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_add(s, s, f, NUM_DIGITS_GF2X_MODULUS);
PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_add(v, v, u);
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_add(s, s, f, NUM_DIGITS_GF2X_MODULUS);
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_add(v, v, u);
}
left_bit_shift(NUM_DIGITS_GF2X_MODULUS, s);
if ( delta == 0 ) {
@@ -322,7 +322,7 @@ int PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_inverse(DIGIT out[], const DIGIT in[]) {
return (delta == 0);
}

void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_mul(DIGIT Res[], const DIGIT A[], const DIGIT B[]) {
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_mul(DIGIT Res[], const DIGIT A[], const DIGIT B[]) {

DIGIT aux[2 * NUM_DIGITS_GF2X_ELEMENT];
GF2X_MUL(2 * NUM_DIGITS_GF2X_ELEMENT, aux,
@@ -334,7 +334,7 @@ void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_mul(DIGIT Res[], const DIGIT A[], const

/*PRE: the representation of the sparse coefficients is sorted in increasing
order of the coefficients themselves */
void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_mul_dense_to_sparse(
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_mul_dense_to_sparse(
DIGIT Res[],
const DIGIT dense[],
POSITION_T sparse[], unsigned int nPos) {
@@ -352,7 +352,7 @@ void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_mul_dense_to_sparse(
for (unsigned int i = 1; i < nPos; i++) {
if (sparse[i] != INVALID_POS_VALUE) {
left_bit_shift_wide_n(2 * NUM_DIGITS_GF2X_ELEMENT, aux, (sparse[i] - sparse[i - 1]) );
PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_add(resDouble, aux, resDouble, 2 * NUM_DIGITS_GF2X_ELEMENT);
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_add(resDouble, aux, resDouble, 2 * NUM_DIGITS_GF2X_ELEMENT);
}
}
}
@@ -361,7 +361,7 @@ void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_mul_dense_to_sparse(

}

void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_transpose_in_place_sparse(int sizeA, POSITION_T A[]) {
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_transpose_in_place_sparse(int sizeA, POSITION_T A[]) {

POSITION_T t;
int i = 0, j;
@@ -383,7 +383,7 @@ void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_transpose_in_place_sparse(int sizeA, POSITIO

}

void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_mul_sparse(size_t sizeR, POSITION_T Res[],
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_mul_sparse(size_t sizeR, POSITION_T Res[],
size_t sizeA, const POSITION_T A[],
size_t sizeB, const POSITION_T B[]) {

@@ -406,7 +406,7 @@ void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_mul_sparse(size_t sizeR, POSITION_T Res[
Res[lastFilledPos] = INVALID_POS_VALUE;
lastFilledPos++;
}
PQCLEAN_LEDAKEMLT32_CLEAN_quicksort_sparse(Res);
PQCLEAN_LEDAKEMLT32_LEAKTIME_quicksort_sparse(Res);
/* eliminate duplicates */
POSITION_T lastReadPos = Res[0];
int duplicateCount;
@@ -433,7 +433,7 @@ void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_mul_sparse(size_t sizeR, POSITION_T Res[

/* the implementation is safe even in case A or B alias with the result */
/* PRE: A and B should be sorted and have INVALID_POS_VALUE at the end */
void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_add_sparse(
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_add_sparse(
int sizeR, POSITION_T Res[],
int sizeA, const POSITION_T A[],
int sizeB, const POSITION_T B[]) {
@@ -492,7 +492,7 @@ static uint32_t rand_range(const unsigned int n, const int logn, AES_XOF_struct
uint32_t mask = ( (uint32_t)1 << logn) - 1;

do {
PQCLEAN_LEDAKEMLT32_CLEAN_seedexpander(seed_expander_ctx, rnd_char_buffer, required_rnd_bytes);
PQCLEAN_LEDAKEMLT32_LEAKTIME_seedexpander(seed_expander_ctx, rnd_char_buffer, required_rnd_bytes);
/* obtain an endianness independent representation of the generated random
bytes into an unsigned integer */
rnd_value = ((uint32_t)rnd_char_buffer[3] << 24) +
@@ -507,7 +507,7 @@ static uint32_t rand_range(const unsigned int n, const int logn, AES_XOF_struct

/* Obtains fresh randomness and seed-expands it until all the required positions
* for the '1's in the circulant block are obtained */
void PQCLEAN_LEDAKEMLT32_CLEAN_rand_circulant_sparse_block(POSITION_T *pos_ones,
void PQCLEAN_LEDAKEMLT32_LEAKTIME_rand_circulant_sparse_block(POSITION_T *pos_ones,
int countOnes,
AES_XOF_struct *seed_expander_ctx) {

@@ -532,7 +532,7 @@ void PQCLEAN_LEDAKEMLT32_CLEAN_rand_circulant_sparse_block(POSITION_T *pos_ones,
}

/* Returns random weight-t circulant block */
void PQCLEAN_LEDAKEMLT32_CLEAN_rand_circulant_blocks_sequence(
void PQCLEAN_LEDAKEMLT32_LEAKTIME_rand_circulant_blocks_sequence(
DIGIT sequence[N0 * NUM_DIGITS_GF2X_ELEMENT],
AES_XOF_struct *seed_expander_ctx) {

@@ -558,13 +558,13 @@ void PQCLEAN_LEDAKEMLT32_CLEAN_rand_circulant_blocks_sequence(
for (int j = 0; j < counter; j++) {
polyIndex = rndPos[j] / P;
exponent = rndPos[j] % P;
PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_set_coeff( sequence + NUM_DIGITS_GF2X_ELEMENT * polyIndex, exponent,
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_set_coeff( sequence + NUM_DIGITS_GF2X_ELEMENT * polyIndex, exponent,
( (DIGIT) 1));
}

}

void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_tobytes(uint8_t *bytes, const DIGIT *poly) {
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_tobytes(uint8_t *bytes, const DIGIT *poly) {
size_t i, j;
for (i = 0; i < NUM_DIGITS_GF2X_ELEMENT; i++) {
for (j = 0; j < DIGIT_SIZE_B; j++) {
@@ -573,7 +573,7 @@ void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_tobytes(uint8_t *bytes, const DIGIT *poly) {
}
}

void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_frombytes(DIGIT *poly, const uint8_t *poly_bytes) {
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_frombytes(DIGIT *poly, const uint8_t *poly_bytes) {
size_t i, j;
for (i = 0; i < NUM_DIGITS_GF2X_ELEMENT; i++) {
poly[i] = (DIGIT) 0;

+ 38
- 0
crypto_kem/ledakemlt32/leaktime/gf2x_arith_mod_xPplusOne.h View File

@@ -0,0 +1,38 @@
#ifndef GF2X_ARITH_MOD_XPLUSONE_H
#define GF2X_ARITH_MOD_XPLUSONE_H

#include "qc_ldpc_parameters.h"

#include "gf2x_arith.h"
#include "rng.h"

#define NUM_BITS_GF2X_ELEMENT (P) // 96221
#define NUM_DIGITS_GF2X_ELEMENT ((P+DIGIT_SIZE_b-1)/DIGIT_SIZE_b)
#define MSb_POSITION_IN_MSB_DIGIT_OF_ELEMENT ((P % DIGIT_SIZE_b) ? (P % DIGIT_SIZE_b)-1 : DIGIT_SIZE_b-1)
#define NUM_BITS_GF2X_MODULUS (P+1)
#define NUM_DIGITS_GF2X_MODULUS ((P+1+DIGIT_SIZE_b-1)/DIGIT_SIZE_b)
#define MSb_POSITION_IN_MSB_DIGIT_OF_MODULUS (P-DIGIT_SIZE_b*(NUM_DIGITS_GF2X_MODULUS-1))
#define INVALID_POS_VALUE (P)
#define P_BITS (17) // log_2(p) = 16.55406417

void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_copy(DIGIT dest[], const DIGIT in[]);
DIGIT PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_get_coeff(const DIGIT poly[], unsigned int exponent);
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_set_coeff(DIGIT poly[], unsigned int exponent, DIGIT value);
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_toggle_coeff(DIGIT poly[], unsigned int exponent);
int PQCLEAN_LEDAKEMLT32_LEAKTIME_population_count(DIGIT *poly);
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_add(DIGIT Res[], const DIGIT A[], const DIGIT B[]);
void PQCLEAN_LEDAKEMLT32_LEAKTIME_quicksort_sparse(POSITION_T Res[]);
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_mul(DIGIT Res[], const DIGIT A[], const DIGIT B[]);
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_transpose_in_place(DIGIT A[]);
void PQCLEAN_LEDAKEMLT32_LEAKTIME_rand_circulant_sparse_block(POSITION_T *pos_ones, int countOnes, AES_XOF_struct *seed_expander_ctx);
void PQCLEAN_LEDAKEMLT32_LEAKTIME_rand_circulant_blocks_sequence(DIGIT *sequence, AES_XOF_struct *seed_expander_ctx);
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_add_sparse(int sizeR, POSITION_T Res[], int sizeA, const POSITION_T A[], int sizeB, const POSITION_T B[]);
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_transpose_in_place_sparse(int sizeA, POSITION_T A[]);
int PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_inverse(DIGIT out[], const DIGIT in[]);
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_mul_sparse(size_t sizeR, POSITION_T Res[], size_t sizeA, const POSITION_T A[], size_t sizeB, const POSITION_T B[]);
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_mul_dense_to_sparse(DIGIT Res[], const DIGIT dense[], POSITION_T sparse[], unsigned int nPos);
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_tobytes(uint8_t *bytes, const DIGIT *poly);
void PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_frombytes(DIGIT *poly, const uint8_t *poly_bytes);


#endif

crypto_kem/ledakemlt52/clean/kem.c → crypto_kem/ledakemlt32/leaktime/kem.c View File

@@ -8,43 +8,43 @@
static void pack_pk(uint8_t *pk_bytes, publicKeyNiederreiter_t *pk) {
size_t i;
for (i = 0; i < N0 - 1; i++) {
PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_tobytes(pk_bytes + i * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B,
pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT);
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_tobytes(pk_bytes + i * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B,
pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT);
}
}

static void unpack_pk(publicKeyNiederreiter_t *pk, const uint8_t *pk_bytes) {
size_t i;
for (i = 0; i < N0 - 1; i++) {
PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_frombytes(pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT,
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_frombytes(pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT,
pk_bytes + i * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B);
}
}

static void pack_ct(uint8_t *sk_bytes, DIGIT *ct) {
PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_tobytes(sk_bytes, ct);
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_tobytes(sk_bytes, ct);
}

static void unpack_ct(DIGIT *ct, const uint8_t *ct_bytes) {
PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_frombytes(ct, ct_bytes);
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_frombytes(ct, ct_bytes);
}

static void pack_error(uint8_t *error_bytes, DIGIT *error_digits) {
size_t i;
for (i = 0; i < N0; i++) {
PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_tobytes(error_bytes + i * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B,
error_digits + i * NUM_DIGITS_GF2X_ELEMENT);
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_tobytes(error_bytes + i * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B,
error_digits + i * NUM_DIGITS_GF2X_ELEMENT);
}
}

/* Generates a keypair - pk is the public key and sk is the secret key. */
int PQCLEAN_LEDAKEMLT52_CLEAN_crypto_kem_keypair(unsigned char *pk, unsigned char *sk) {
int PQCLEAN_LEDAKEMLT32_LEAKTIME_crypto_kem_keypair(unsigned char *pk, unsigned char *sk) {
AES_XOF_struct niederreiter_keys_expander;
publicKeyNiederreiter_t pk_nie;

randombytes(((privateKeyNiederreiter_t *)sk)->prng_seed, TRNG_BYTE_LENGTH);
PQCLEAN_LEDAKEMLT52_CLEAN_seedexpander_from_trng(&niederreiter_keys_expander, ((privateKeyNiederreiter_t *)sk)->prng_seed);
PQCLEAN_LEDAKEMLT52_CLEAN_niederreiter_keygen(&pk_nie, (privateKeyNiederreiter_t *) sk, &niederreiter_keys_expander);
PQCLEAN_LEDAKEMLT32_LEAKTIME_seedexpander_from_trng(&niederreiter_keys_expander, ((privateKeyNiederreiter_t *)sk)->prng_seed);
PQCLEAN_LEDAKEMLT32_LEAKTIME_niederreiter_keygen(&pk_nie, (privateKeyNiederreiter_t *) sk, &niederreiter_keys_expander);

pack_pk(pk, &pk_nie);

@@ -53,7 +53,7 @@ int PQCLEAN_LEDAKEMLT52_CLEAN_crypto_kem_keypair(unsigned char *pk, unsigned cha

/* Encrypt - pk is the public key, ct is a key encapsulation message
(ciphertext), ss is the shared secret.*/
int PQCLEAN_LEDAKEMLT52_CLEAN_crypto_kem_enc(unsigned char *ct, unsigned char *ss, const unsigned char *pk) {
int PQCLEAN_LEDAKEMLT32_LEAKTIME_crypto_kem_enc(unsigned char *ct, unsigned char *ss, const unsigned char *pk) {
AES_XOF_struct niederreiter_encap_key_expander;
unsigned char encapsulated_key_seed[TRNG_BYTE_LENGTH];
DIGIT error_vector[N0 * NUM_DIGITS_GF2X_ELEMENT];
@@ -64,11 +64,11 @@ int PQCLEAN_LEDAKEMLT52_CLEAN_crypto_kem_enc(unsigned char *ct, unsigned char *s
randombytes(encapsulated_key_seed, TRNG_BYTE_LENGTH);
unpack_pk(&pk_nie, pk);

PQCLEAN_LEDAKEMLT52_CLEAN_seedexpander_from_trng(&niederreiter_encap_key_expander, encapsulated_key_seed);
PQCLEAN_LEDAKEMLT52_CLEAN_rand_circulant_blocks_sequence(error_vector, &niederreiter_encap_key_expander);
PQCLEAN_LEDAKEMLT32_LEAKTIME_seedexpander_from_trng(&niederreiter_encap_key_expander, encapsulated_key_seed);
PQCLEAN_LEDAKEMLT32_LEAKTIME_rand_circulant_blocks_sequence(error_vector, &niederreiter_encap_key_expander);
pack_error(error_bytes, error_vector);
HASH_FUNCTION(ss, error_bytes, (N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B));
PQCLEAN_LEDAKEMLT52_CLEAN_niederreiter_encrypt(syndrome, &pk_nie, error_vector);
PQCLEAN_LEDAKEMLT32_LEAKTIME_niederreiter_encrypt(syndrome, &pk_nie, error_vector);

pack_ct(ct, syndrome);

@@ -78,13 +78,13 @@ int PQCLEAN_LEDAKEMLT52_CLEAN_crypto_kem_enc(unsigned char *ct, unsigned char *s

/* Decrypt - ct is a key encapsulation message (ciphertext), sk is the private
key, ss is the shared secret */
int PQCLEAN_LEDAKEMLT52_CLEAN_crypto_kem_dec(unsigned char *ss, const unsigned char *ct, const unsigned char *sk) {
int PQCLEAN_LEDAKEMLT32_LEAKTIME_crypto_kem_dec(unsigned char *ss, const unsigned char *ct, const unsigned char *sk) {
DIGIT decoded_error_vector[N0 * NUM_DIGITS_GF2X_ELEMENT];
uint8_t decoded_error_bytes[N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B];
DIGIT syndrome[NUM_DIGITS_GF2X_ELEMENT];

unpack_ct(syndrome, ct);
PQCLEAN_LEDAKEMLT52_CLEAN_niederreiter_decrypt(decoded_error_vector, (privateKeyNiederreiter_t *)sk, syndrome);
PQCLEAN_LEDAKEMLT32_LEAKTIME_niederreiter_decrypt(decoded_error_vector, (privateKeyNiederreiter_t *)sk, syndrome);
pack_error(decoded_error_bytes, decoded_error_vector);
HASH_FUNCTION(ss, decoded_error_bytes, (N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B));


crypto_kem/ledakemlt12/clean/niederreiter.c → crypto_kem/ledakemlt32/leaktime/niederreiter.c View File

@@ -8,7 +8,7 @@

#include <string.h>

void PQCLEAN_LEDAKEMLT12_CLEAN_niederreiter_keygen(publicKeyNiederreiter_t *pk, privateKeyNiederreiter_t *sk, AES_XOF_struct *keys_expander) {
void PQCLEAN_LEDAKEMLT32_LEAKTIME_niederreiter_keygen(publicKeyNiederreiter_t *pk, privateKeyNiederreiter_t *sk, AES_XOF_struct *keys_expander) {

POSITION_T HPosOnes[N0][DV]; // sequence of N0 circ block matrices (p x p): Hi
POSITION_T HtrPosOnes[N0][DV]; // Sparse tranposed circulant H
@@ -23,8 +23,8 @@ void PQCLEAN_LEDAKEMLT12_CLEAN_niederreiter_keygen(publicKeyNiederreiter_t *pk,
sk->rejections = (int8_t) 0;

do {
PQCLEAN_LEDAKEMLT12_CLEAN_generateHPosOnes_HtrPosOnes(HPosOnes, HtrPosOnes, keys_expander);
PQCLEAN_LEDAKEMLT12_CLEAN_generateQsparse(QPosOnes, keys_expander);
PQCLEAN_LEDAKEMLT32_LEAKTIME_generateHPosOnes_HtrPosOnes(HPosOnes, HtrPosOnes, keys_expander);
PQCLEAN_LEDAKEMLT32_LEAKTIME_generateQsparse(QPosOnes, keys_expander);
for (int i = 0; i < N0; i++) {
for (int j = 0; j < DV * M; j++) {
LPosOnes[i][j] = INVALID_POS_VALUE;
@@ -34,10 +34,10 @@ void PQCLEAN_LEDAKEMLT12_CLEAN_niederreiter_keygen(publicKeyNiederreiter_t *pk,
memset(processedQOnes, 0x00, sizeof(processedQOnes));
for (int colQ = 0; colQ < N0; colQ++) {
for (int i = 0; i < N0; i++) {
PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_mul_sparse(DV * M, auxPosOnes,
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_mul_sparse(DV * M, auxPosOnes,
DV, HPosOnes[i],
qBlockWeights[i][colQ], QPosOnes[i] + processedQOnes[i]);
PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_add_sparse(DV * M, LPosOnes[colQ],
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_add_sparse(DV * M, LPosOnes[colQ],
DV * M, LPosOnes[colQ],
DV * M, auxPosOnes);
processedQOnes[i] += qBlockWeights[i][colQ];
@@ -49,7 +49,7 @@ void PQCLEAN_LEDAKEMLT12_CLEAN_niederreiter_keygen(publicKeyNiederreiter_t *pk,
}
sk->rejections = sk->rejections + 1;
if (is_L_full) {
threshold = PQCLEAN_LEDAKEMLT12_CLEAN_DFR_test(LPosOnes);
threshold = PQCLEAN_LEDAKEMLT32_LEAKTIME_DFR_test(LPosOnes);
}
} while (!is_L_full || threshold == DFR_TEST_FAIL);
sk->rejections = sk->rejections - 1;
@@ -58,41 +58,41 @@ void PQCLEAN_LEDAKEMLT12_CLEAN_niederreiter_keygen(publicKeyNiederreiter_t *pk,
memset(Ln0dense, 0x00, sizeof(Ln0dense));
for (int j = 0; j < DV * M; j++) {
if (LPosOnes[N0 - 1][j] != INVALID_POS_VALUE) {
PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_set_coeff(Ln0dense, LPosOnes[N0 - 1][j], 1);
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_set_coeff(Ln0dense, LPosOnes[N0 - 1][j], 1);
}
}

memset(Ln0Inv, 0x00, sizeof(Ln0Inv));
PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_inverse(Ln0Inv, Ln0dense);
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_inverse(Ln0Inv, Ln0dense);
for (int i = 0; i < N0 - 1; i++) {
PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_mul_dense_to_sparse(pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT,
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_mul_dense_to_sparse(pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT,
Ln0Inv,
LPosOnes[i],
DV * M);
}

for (int i = 0; i < N0 - 1; i++) {
PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_transpose_in_place(pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT);
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_transpose_in_place(pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT);
}
}


void PQCLEAN_LEDAKEMLT12_CLEAN_niederreiter_encrypt(DIGIT *syndrome, const publicKeyNiederreiter_t *pk, const DIGIT *err) {
void PQCLEAN_LEDAKEMLT32_LEAKTIME_niederreiter_encrypt(DIGIT *syndrome, const publicKeyNiederreiter_t *pk, const DIGIT *err) {
int i;
DIGIT saux[NUM_DIGITS_GF2X_ELEMENT];

memset(syndrome, 0x00, NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B);
for (i = 0; i < N0 - 1; i++) {
PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_mul(saux,
pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT,
err + i * NUM_DIGITS_GF2X_ELEMENT);
PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_add(syndrome, syndrome, saux);
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_mul(saux,
pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT,
err + i * NUM_DIGITS_GF2X_ELEMENT);
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_add(syndrome, syndrome, saux);
}
PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_add(syndrome, syndrome, err + (N0 - 1)*NUM_DIGITS_GF2X_ELEMENT);
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_add(syndrome, syndrome, err + (N0 - 1)*NUM_DIGITS_GF2X_ELEMENT);
}


int PQCLEAN_LEDAKEMLT12_CLEAN_niederreiter_decrypt(DIGIT *err, const privateKeyNiederreiter_t *sk, const DIGIT *syndrome) {
int PQCLEAN_LEDAKEMLT32_LEAKTIME_niederreiter_decrypt(DIGIT *err, const privateKeyNiederreiter_t *sk, const DIGIT *syndrome) {
AES_XOF_struct niederreiter_decrypt_expander;
POSITION_T HPosOnes[N0][DV];
POSITION_T HtrPosOnes[N0][DV];
@@ -110,11 +110,11 @@ int PQCLEAN_LEDAKEMLT12_CLEAN_niederreiter_decrypt(DIGIT *err, const privateKeyN
int currQoneIdx, endQblockIdx;
int decryptOk, err_weight;

PQCLEAN_LEDAKEMLT12_CLEAN_seedexpander_from_trng(&niederreiter_decrypt_expander, sk->prng_seed);
PQCLEAN_LEDAKEMLT32_LEAKTIME_seedexpander_from_trng(&niederreiter_decrypt_expander, sk->prng_seed);

do {
PQCLEAN_LEDAKEMLT12_CLEAN_generateHPosOnes_HtrPosOnes(HPosOnes, HtrPosOnes, &niederreiter_decrypt_expander);
PQCLEAN_LEDAKEMLT12_CLEAN_generateQsparse(QPosOnes, &niederreiter_decrypt_expander);
PQCLEAN_LEDAKEMLT32_LEAKTIME_generateHPosOnes_HtrPosOnes(HPosOnes, HtrPosOnes, &niederreiter_decrypt_expander);
PQCLEAN_LEDAKEMLT32_LEAKTIME_generateQsparse(QPosOnes, &niederreiter_decrypt_expander);
for (int i = 0; i < N0; i++) {
for (int j = 0; j < DV * M; j++) {
LPosOnes[i][j] = INVALID_POS_VALUE;
@@ -124,10 +124,10 @@ int PQCLEAN_LEDAKEMLT12_CLEAN_niederreiter_decrypt(DIGIT *err, const privateKeyN
memset(processedQOnes, 0x00, sizeof(processedQOnes));
for (int colQ = 0; colQ < N0; colQ++) {
for (int i = 0; i < N0; i++) {
PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_mul_sparse(DV * M, auxPosOnes,
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_mul_sparse(DV * M, auxPosOnes,
DV, HPosOnes[i],
qBlockWeights[i][colQ], QPosOnes[i] + processedQOnes[i]);
PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_add_sparse(DV * M, LPosOnes[colQ],
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_add_sparse(DV * M, LPosOnes[colQ],
DV * M, LPosOnes[colQ],
DV * M, auxPosOnes);
processedQOnes[i] += qBlockWeights[i][colQ];
@@ -156,31 +156,31 @@ int PQCLEAN_LEDAKEMLT12_CLEAN_niederreiter_decrypt(DIGIT *err, const privateKeyN
}

for (int i = 0; i < N0; i++) {
PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_mul_sparse(DV * M, auxSparse,
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_mul_sparse(DV * M, auxSparse,
DV, HPosOnes[i],
qBlockWeights[i][N0 - 1], &QPosOnes[i][ M - qBlockWeights[i][N0 - 1]]);
PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_add_sparse(DV * M, Ln0trSparse,
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_add_sparse(DV * M, Ln0trSparse,
DV * M, Ln0trSparse,
DV * M, auxSparse);
}

PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_transpose_in_place_sparse(DV * M, Ln0trSparse);
PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mod_mul_dense_to_sparse(privateSyndrome, syndrome, Ln0trSparse, DV * M);
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_transpose_in_place_sparse(DV * M, Ln0trSparse);
PQCLEAN_LEDAKEMLT32_LEAKTIME_gf2x_mod_mul_dense_to_sparse(privateSyndrome, syndrome, Ln0trSparse, DV * M);

/* prepare mockup error vector in case a decoding failure occurs */
memset(mockup_error_vector, 0x00, N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B);
memcpy(mockup_error_vector, syndrome, NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B);
PQCLEAN_LEDAKEMLT12_CLEAN_seedexpander(&niederreiter_decrypt_expander,
((unsigned char *) mockup_error_vector) + (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B),
TRNG_BYTE_LENGTH);
PQCLEAN_LEDAKEMLT32_LEAKTIME_seedexpander(&niederreiter_decrypt_expander,
((unsigned char *) mockup_error_vector) + (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B),
TRNG_BYTE_LENGTH);

memset(err, 0x00, N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B);
decryptOk = PQCLEAN_LEDAKEMLT12_CLEAN_bf_decoding(err, (const POSITION_T (*)[DV]) HtrPosOnes,
decryptOk = PQCLEAN_LEDAKEMLT32_LEAKTIME_bf_decoding(err, (const POSITION_T (*)[DV]) HtrPosOnes,
(const POSITION_T (*)[M]) QtrPosOnes, privateSyndrome, sk->threshold);

err_weight = 0;
for (int i = 0 ; i < N0; i++) {
err_weight += PQCLEAN_LEDAKEMLT12_CLEAN_population_count(err + (NUM_DIGITS_GF2X_ELEMENT * i));
err_weight += PQCLEAN_LEDAKEMLT32_LEAKTIME_population_count(err + (NUM_DIGITS_GF2X_ELEMENT * i));
}
decryptOk = decryptOk && (err_weight == NUM_ERRORS_T);


crypto_kem/ledakemlt52/clean/niederreiter.h → crypto_kem/ledakemlt32/leaktime/niederreiter.h View File

@@ -21,9 +21,9 @@ typedef struct {
// with P coefficients.
} publicKeyNiederreiter_t;

void PQCLEAN_LEDAKEMLT52_CLEAN_niederreiter_keygen(publicKeyNiederreiter_t *pk, privateKeyNiederreiter_t *sk, AES_XOF_struct *keys_expander);
void PQCLEAN_LEDAKEMLT52_CLEAN_niederreiter_encrypt(DIGIT syndrome[], const publicKeyNiederreiter_t *pk, const DIGIT *err);
int PQCLEAN_LEDAKEMLT52_CLEAN_niederreiter_decrypt(DIGIT *err, const privateKeyNiederreiter_t *sk, const DIGIT *syndrome);
void PQCLEAN_LEDAKEMLT32_LEAKTIME_niederreiter_keygen(publicKeyNiederreiter_t *pk, privateKeyNiederreiter_t *sk, AES_XOF_struct *keys_expander);
void PQCLEAN_LEDAKEMLT32_LEAKTIME_niederreiter_encrypt(DIGIT syndrome[], const publicKeyNiederreiter_t *pk, const DIGIT *err);
int PQCLEAN_LEDAKEMLT32_LEAKTIME_niederreiter_decrypt(DIGIT *err, const privateKeyNiederreiter_t *sk, const DIGIT *syndrome);


#endif

crypto_kem/ledakemlt32/clean/qc_ldpc_parameters.h → crypto_kem/ledakemlt32/leaktime/qc_ldpc_parameters.h View File


crypto_kem/ledakemlt32/clean/rng.c → crypto_kem/ledakemlt32/leaktime/rng.c View File

@@ -37,7 +37,7 @@ static void seedexpander_init(AES_XOF_struct *ctx,
memset(ctx->buffer, 0x00, 16);
}

void PQCLEAN_LEDAKEMLT32_CLEAN_seedexpander_from_trng(AES_XOF_struct *ctx,
void PQCLEAN_LEDAKEMLT32_LEAKTIME_seedexpander_from_trng(AES_XOF_struct *ctx,
const unsigned char *trng_entropy
/* TRNG_BYTE_LENGTH wide buffer */) {

@@ -61,7 +61,7 @@ void PQCLEAN_LEDAKEMLT32_CLEAN_seedexpander_from_trng(AES_XOF_struct *ctx,
x - returns the XOF data
xlen - number of bytes to return
*/
int PQCLEAN_LEDAKEMLT32_CLEAN_seedexpander(AES_XOF_struct *ctx, unsigned char *x, size_t xlen) {
int PQCLEAN_LEDAKEMLT32_LEAKTIME_seedexpander(AES_XOF_struct *ctx, unsigned char *x, size_t xlen) {
size_t offset;
aes256ctx ctx256;


crypto_kem/ledakemlt52/clean/rng.h → crypto_kem/ledakemlt32/leaktime/rng.h View File

@@ -18,7 +18,7 @@ typedef struct {
unsigned char ctr[16];
} AES_XOF_struct;

int PQCLEAN_LEDAKEMLT52_CLEAN_seedexpander(AES_XOF_struct *ctx, unsigned char *x, size_t xlen);
void PQCLEAN_LEDAKEMLT52_CLEAN_seedexpander_from_trng(AES_XOF_struct *ctx, const unsigned char *trng_entropy);
int PQCLEAN_LEDAKEMLT32_LEAKTIME_seedexpander(AES_XOF_struct *ctx, unsigned char *x, size_t xlen);
void PQCLEAN_LEDAKEMLT32_LEAKTIME_seedexpander_from_trng(AES_XOF_struct *ctx, const unsigned char *trng_entropy);

#endif

+ 1
- 1
crypto_kem/ledakemlt52/META.yml View File

@@ -14,5 +14,5 @@ auxiliary-submitters:
- Gerardo Pelosi
- Paolo Santini
implementations:
- name: clean
- name: leaktime
version: 2.?

+ 0
- 11
crypto_kem/ledakemlt52/clean/H_Q_matrices_generation.h View File

@@ -1,11 +0,0 @@
#ifndef H_Q_MATRICES_GENERATION_H
#define H_Q_MATRICES_GENERATION_H

#include "gf2x_arith.h"
#include "qc_ldpc_parameters.h"
#include "rng.h"

void PQCLEAN_LEDAKEMLT52_CLEAN_generateHPosOnes_HtrPosOnes(POSITION_T HPosOnes[N0][DV], POSITION_T HtrPosOnes[N0][DV], AES_XOF_struct *niederreiter_keys_expander);
void PQCLEAN_LEDAKEMLT52_CLEAN_generateQsparse(POSITION_T pos_ones[N0][M], AES_XOF_struct *niederreiter_keys_expander);

#endif

+ 0
- 18
crypto_kem/ledakemlt52/clean/api.h View File

@@ -1,18 +0,0 @@
#ifndef PQCLEAN_LEDAKEMLT52_CLEAN_API_H
#define PQCLEAN_LEDAKEMLT52_CLEAN_API_H

#include <stdint.h>

#define PQCLEAN_LEDAKEMLT52_CLEAN_CRYPTO_SECRETKEYBYTES 42
#define PQCLEAN_LEDAKEMLT52_CLEAN_CRYPTO_PUBLICKEYBYTES 19040
#define PQCLEAN_LEDAKEMLT52_CLEAN_CRYPTO_CIPHERTEXTBYTES 19040
#define PQCLEAN_LEDAKEMLT52_CLEAN_CRYPTO_BYTES 64

#define PQCLEAN_LEDAKEMLT52_CLEAN_CRYPTO_ALGNAME "LEDAKEMLT52"

int PQCLEAN_LEDAKEMLT52_CLEAN_crypto_kem_keypair(uint8_t *pk, uint8_t *sk);
int PQCLEAN_LEDAKEMLT52_CLEAN_crypto_kem_enc(uint8_t *ct, uint8_t *ss, const uint8_t *pk);
int PQCLEAN_LEDAKEMLT52_CLEAN_crypto_kem_dec(uint8_t *ss, const uint8_t *ct, const uint8_t *sk);


#endif

+ 0
- 8
crypto_kem/ledakemlt52/clean/dfr_test.h View File

@@ -1,8 +0,0 @@
#ifndef DFR_TEST_H
#define DFR_TEST_H

#define DFR_TEST_FAIL (255)

uint8_t PQCLEAN_LEDAKEMLT52_CLEAN_DFR_test(POSITION_T LSparse[N0][DV * M]);

#endif

+ 0
- 37
crypto_kem/ledakemlt52/clean/gf2x_arith_mod_xPplusOne.h View File

@@ -1,37 +0,0 @@
#ifndef GF2X_ARITH_MOD_XPLUSONE_H
#define GF2X_ARITH_MOD_XPLUSONE_H

#include "qc_ldpc_parameters.h"

#include "gf2x_arith.h"
#include "rng.h"

#define NUM_BITS_GF2X_ELEMENT (P) // 152267
#define NUM_DIGITS_GF2X_ELEMENT ((P+DIGIT_SIZE_b-1)/DIGIT_SIZE_b) // 2380
#define MSb_POSITION_IN_MSB_DIGIT_OF_ELEMENT ((P % DIGIT_SIZE_b) ? (P % DIGIT_SIZE_b)-1 : DIGIT_SIZE_b-1)
#define NUM_BITS_GF2X_MODULUS (P+1)
#define NUM_DIGITS_GF2X_MODULUS ((P+1+DIGIT_SIZE_b-1)/DIGIT_SIZE_b) // 2380
#define MSb_POSITION_IN_MSB_DIGIT_OF_MODULUS (P-DIGIT_SIZE_b*(NUM_DIGITS_GF2X_MODULUS-1))
#define INVALID_POS_VALUE (P)
#define P_BITS (18) // log_2(p) = 17.216243783

void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_copy(DIGIT dest[], const DIGIT in[]);
DIGIT PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_get_coeff(const DIGIT poly[], unsigned int exponent);
void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_set_coeff(DIGIT poly[], unsigned int exponent, DIGIT value);
void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_toggle_coeff(DIGIT poly[], unsigned int exponent);
int PQCLEAN_LEDAKEMLT52_CLEAN_population_count(DIGIT *poly);
void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_add(DIGIT Res[], const DIGIT A[], const DIGIT B[]);
void PQCLEAN_LEDAKEMLT52_CLEAN_quicksort_sparse(POSITION_T Res[]);
void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_mul(DIGIT Res[], const DIGIT A[], const DIGIT B[]);
void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_transpose_in_place(DIGIT A[]);
void PQCLEAN_LEDAKEMLT52_CLEAN_rand_circulant_sparse_block(POSITION_T *pos_ones, int countOnes, AES_XOF_struct *seed_expander_ctx);
void PQCLEAN_LEDAKEMLT52_CLEAN_rand_circulant_blocks_sequence(DIGIT *sequence, AES_XOF_struct *seed_expander_ctx);
void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_add_sparse(int sizeR, POSITION_T Res[], int sizeA, const POSITION_T A[], int sizeB, const POSITION_T B[]);
void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_transpose_in_place_sparse(int sizeA, POSITION_T A[]);
int PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_inverse(DIGIT out[], const DIGIT in[]);
void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_mul_sparse(size_t sizeR, POSITION_T Res[], size_t sizeA, const POSITION_T A[], size_t sizeB, const POSITION_T B[]);
void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_mul_dense_to_sparse(DIGIT Res[], const DIGIT dense[], POSITION_T sparse[], unsigned int nPos);
void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_tobytes(uint8_t *bytes, const DIGIT *poly);
void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_frombytes(DIGIT *poly, const uint8_t *poly_bytes);

#endif

crypto_kem/ledakemlt32/clean/H_Q_matrices_generation.c → crypto_kem/ledakemlt52/leaktime/H_Q_matrices_generation.c View File

@@ -1,13 +1,13 @@
#include "H_Q_matrices_generation.h"
#include "gf2x_arith_mod_xPplusOne.h"

void PQCLEAN_LEDAKEMLT32_CLEAN_generateHPosOnes_HtrPosOnes(
void PQCLEAN_LEDAKEMLT52_LEAKTIME_generateHPosOnes_HtrPosOnes(
POSITION_T HPosOnes[N0][DV],
POSITION_T HtrPosOnes[N0][DV],
AES_XOF_struct *keys_expander) {
for (int i = 0; i < N0; i++) {
/* Generate a random block of Htr */
PQCLEAN_LEDAKEMLT32_CLEAN_rand_circulant_sparse_block(&HtrPosOnes[i][0], DV, keys_expander);
PQCLEAN_LEDAKEMLT52_LEAKTIME_rand_circulant_sparse_block(&HtrPosOnes[i][0], DV, keys_expander);
}
for (int i = 0; i < N0; i++) {
/* Obtain directly the sparse representation of the block of H */
@@ -17,13 +17,13 @@ void PQCLEAN_LEDAKEMLT32_CLEAN_generateHPosOnes_HtrPosOnes(
}
}

void PQCLEAN_LEDAKEMLT32_CLEAN_generateQsparse(
void PQCLEAN_LEDAKEMLT52_LEAKTIME_generateQsparse(
POSITION_T pos_ones[N0][M],
AES_XOF_struct *keys_expander) {
for (int i = 0; i < N0; i++) {
int placed_ones = 0;
for (int j = 0; j < N0; j++) {
PQCLEAN_LEDAKEMLT32_CLEAN_rand_circulant_sparse_block(&pos_ones[i][placed_ones],
PQCLEAN_LEDAKEMLT52_LEAKTIME_rand_circulant_sparse_block(&pos_ones[i][placed_ones],
qBlockWeights[i][j],
keys_expander);
placed_ones += qBlockWeights[i][j];

+ 11
- 0
crypto_kem/ledakemlt52/leaktime/H_Q_matrices_generation.h View File

@@ -0,0 +1,11 @@
#ifndef H_Q_MATRICES_GENERATION_H
#define H_Q_MATRICES_GENERATION_H

#include "gf2x_arith.h"
#include "qc_ldpc_parameters.h"
#include "rng.h"

void PQCLEAN_LEDAKEMLT52_LEAKTIME_generateHPosOnes_HtrPosOnes(POSITION_T HPosOnes[N0][DV], POSITION_T HtrPosOnes[N0][DV], AES_XOF_struct *niederreiter_keys_expander);
void PQCLEAN_LEDAKEMLT52_LEAKTIME_generateQsparse(POSITION_T pos_ones[N0][M], AES_XOF_struct *niederreiter_keys_expander);

#endif

crypto_kem/ledakemlt52/clean/LICENSE → crypto_kem/ledakemlt52/leaktime/LICENSE View File


crypto_kem/ledakemlt12/clean/Makefile → crypto_kem/ledakemlt52/leaktime/Makefile View File

@@ -1,6 +1,6 @@
# This Makefile can be used with GNU Make or BSD Make

LIB=libledakemlt12_clean.a
LIB=libledakemlt52_leaktime.a
HEADERS=api.h bf_decoding.h dfr_test.h gf2x_arith_mod_xPplusOne.h \
gf2x_arith.h H_Q_matrices_generation.h \
niederreiter.h qc_ldpc_parameters.h rng.h

crypto_kem/ledakemlt12/clean/Makefile.Microsoft_nmake → crypto_kem/ledakemlt52/leaktime/Makefile.Microsoft_nmake View File

@@ -1,7 +1,7 @@
# This Makefile can be used with Microsoft Visual Studio's nmake using the command:
# nmake /f Makefile.Microsoft_nmake

LIBRARY=libledakemlt12_clean.lib
LIBRARY=libledakemlt52_leaktime.lib
OBJECTS=bf_decoding.obj dfr_test.obj gf2x_arith_mod_xPplusOne.obj gf2x_arith.obj H_Q_matrices_generation.obj kem.obj niederreiter.obj rng.obj

CFLAGS=/nologo /I ..\..\..\common /W4 /WX

+ 18
- 0
crypto_kem/ledakemlt52/leaktime/api.h View File

@@ -0,0 +1,18 @@
#ifndef PQCLEAN_LEDAKEMLT52_LEAKTIME_API_H
#define PQCLEAN_LEDAKEMLT52_LEAKTIME_API_H

#include <stdint.h>

#define PQCLEAN_LEDAKEMLT52_LEAKTIME_CRYPTO_SECRETKEYBYTES 42
#define PQCLEAN_LEDAKEMLT52_LEAKTIME_CRYPTO_PUBLICKEYBYTES 19040
#define PQCLEAN_LEDAKEMLT52_LEAKTIME_CRYPTO_CIPHERTEXTBYTES 19040
#define PQCLEAN_LEDAKEMLT52_LEAKTIME_CRYPTO_BYTES 64

#define PQCLEAN_LEDAKEMLT52_LEAKTIME_CRYPTO_ALGNAME "LEDAKEMLT52"

int PQCLEAN_LEDAKEMLT52_LEAKTIME_crypto_kem_keypair(uint8_t *pk, uint8_t *sk);
int PQCLEAN_LEDAKEMLT52_LEAKTIME_crypto_kem_enc(uint8_t *ct, uint8_t *ss, const uint8_t *pk);
int PQCLEAN_LEDAKEMLT52_LEAKTIME_crypto_kem_dec(uint8_t *ss, const uint8_t *ct, const uint8_t *sk);


#endif

crypto_kem/ledakemlt32/clean/bf_decoding.c → crypto_kem/ledakemlt52/leaktime/bf_decoding.c View File

@@ -4,7 +4,7 @@
#include <assert.h>
#include <string.h>

int PQCLEAN_LEDAKEMLT32_CLEAN_bf_decoding(DIGIT err[],
int PQCLEAN_LEDAKEMLT52_LEAKTIME_bf_decoding(DIGIT err[],
const POSITION_T HtrPosOnes[N0][DV],
const POSITION_T QtrPosOnes[N0][M],
DIGIT privateSyndrome[],
@@ -18,13 +18,13 @@ int PQCLEAN_LEDAKEMLT32_CLEAN_bf_decoding(DIGIT err[],
unsigned int corrt_syndrome_based;

do {
PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_copy(currSyndrome, privateSyndrome);
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_copy(currSyndrome, privateSyndrome);
memset(unsatParityChecks, 0x00, N0 * P * sizeof(uint8_t));
for (int i = 0; i < N0; i++) {
for (int valueIdx = 0; valueIdx < P; valueIdx++) {
for (int HtrOneIdx = 0; HtrOneIdx < DV; HtrOneIdx++) {
POSITION_T tmp = (HtrPosOnes[i][HtrOneIdx] + valueIdx) >= P ? (HtrPosOnes[i][HtrOneIdx] + valueIdx) - P : (HtrPosOnes[i][HtrOneIdx] + valueIdx);
if (PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_get_coeff(currSyndrome, tmp)) {
if (PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_get_coeff(currSyndrome, tmp)) {
unsatParityChecks[i * P + valueIdx]++;
}
}
@@ -54,13 +54,13 @@ int PQCLEAN_LEDAKEMLT32_CLEAN_bf_decoding(DIGIT err[],
}
/* Correlation based flipping */
if (correlation >= corrt_syndrome_based) {
PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_toggle_coeff(err + NUM_DIGITS_GF2X_ELEMENT * i, j);
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_toggle_coeff(err + NUM_DIGITS_GF2X_ELEMENT * i, j);
for (int v = 0; v < M; v++) {
POSITION_T syndromePosToFlip;
for (int HtrOneIdx = 0; HtrOneIdx < DV; HtrOneIdx++) {
syndromePosToFlip = (HtrPosOnes[currQBlkPos[v]][HtrOneIdx] + currQBitPos[v] );
syndromePosToFlip = syndromePosToFlip >= P ? syndromePosToFlip - P : syndromePosToFlip;
PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_toggle_coeff(privateSyndrome, syndromePosToFlip);
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_toggle_coeff(privateSyndrome, syndromePosToFlip);
}
} // end for v
} // end if

crypto_kem/ledakemlt52/clean/bf_decoding.h → crypto_kem/ledakemlt52/leaktime/bf_decoding.h View File

@@ -9,7 +9,7 @@
#define B0 (88)
#define T_BAR (6)

int PQCLEAN_LEDAKEMLT52_CLEAN_bf_decoding(DIGIT err[],
int PQCLEAN_LEDAKEMLT52_LEAKTIME_bf_decoding(DIGIT err[],
const POSITION_T HtrPosOnes[N0][DV],
const POSITION_T QtrPosOnes[N0][M],
DIGIT privateSyndrome[],

crypto_kem/ledakemlt52/clean/dfr_test.c → crypto_kem/ledakemlt52/leaktime/dfr_test.c View File

@@ -9,7 +9,7 @@
* computes the threshold for the second iteration of the decoder and returns this values
* (max DV * M), on failure it returns 255 >> DV * M */

uint8_t PQCLEAN_LEDAKEMLT52_CLEAN_DFR_test(POSITION_T LSparse[N0][DV * M]) {
uint8_t PQCLEAN_LEDAKEMLT52_LEAKTIME_DFR_test(POSITION_T LSparse[N0][DV * M]) {

POSITION_T LSparse_loc[N0][DV * M];
POSITION_T rotated_column[DV * M];
@@ -31,7 +31,7 @@ uint8_t PQCLEAN_LEDAKEMLT52_CLEAN_DFR_test(POSITION_T LSparse[N0][DV * M]) {
LSparse_loc[i][j] = (P - LSparse[i][j]);
}
}
PQCLEAN_LEDAKEMLT52_CLEAN_quicksort_sparse(LSparse_loc[i]);
PQCLEAN_LEDAKEMLT52_LEAKTIME_quicksort_sparse(LSparse_loc[i]);
}

for (int i = 0; i < N0; i++ ) {
@@ -41,7 +41,7 @@ uint8_t PQCLEAN_LEDAKEMLT52_CLEAN_DFR_test(POSITION_T LSparse[N0][DV * M]) {
for (int idxToRotate = 0; idxToRotate < (DV * M); idxToRotate++) {
rotated_column[idxToRotate] = (LSparse_loc[j][idxToRotate] + k) % P;
}
PQCLEAN_LEDAKEMLT52_CLEAN_quicksort_sparse(rotated_column);
PQCLEAN_LEDAKEMLT52_LEAKTIME_quicksort_sparse(rotated_column);
/* compute the intersection amount */
firstidx = 0, secondidx = 0;
intersectionval = 0;

+ 8
- 0
crypto_kem/ledakemlt52/leaktime/dfr_test.h View File

@@ -0,0 +1,8 @@
#ifndef DFR_TEST_H
#define DFR_TEST_H

#define DFR_TEST_FAIL (255)

uint8_t PQCLEAN_LEDAKEMLT52_LEAKTIME_DFR_test(POSITION_T LSparse[N0][DV * M]);

#endif

crypto_kem/ledakemlt32/clean/gf2x_arith.c → crypto_kem/ledakemlt52/leaktime/gf2x_arith.c View File

@@ -3,14 +3,14 @@
#include <assert.h>
#include <string.h> // memset(...)

void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_add(DIGIT Res[], const DIGIT A[], const DIGIT B[], int nr) {
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_add(DIGIT Res[], const DIGIT A[], const DIGIT B[], int nr) {
for (int i = 0; i < nr; i++) {
Res[i] = A[i] ^ B[i];
}
}

/* PRE: MAX ALLOWED ROTATION AMOUNT : DIGIT_SIZE_b */
void PQCLEAN_LEDAKEMLT32_CLEAN_right_bit_shift_n(int length, DIGIT in[], unsigned int amount) {
void PQCLEAN_LEDAKEMLT52_LEAKTIME_right_bit_shift_n(int length, DIGIT in[], unsigned int amount) {
assert(amount < DIGIT_SIZE_b);
if ( amount == 0 ) {
return;
@@ -26,7 +26,7 @@ void PQCLEAN_LEDAKEMLT32_CLEAN_right_bit_shift_n(int length, DIGIT in[], unsigne
}

/* PRE: MAX ALLOWED ROTATION AMOUNT : DIGIT_SIZE_b */
void PQCLEAN_LEDAKEMLT32_CLEAN_left_bit_shift_n(int length, DIGIT in[], unsigned int amount) {
void PQCLEAN_LEDAKEMLT52_LEAKTIME_left_bit_shift_n(int length, DIGIT in[], unsigned int amount) {
assert(amount < DIGIT_SIZE_b);
if ( amount == 0 ) {
return;
@@ -41,7 +41,7 @@ void PQCLEAN_LEDAKEMLT32_CLEAN_left_bit_shift_n(int length, DIGIT in[], unsigned
in[j] <<= amount;
}

void PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mul_comb(int nr, DIGIT Res[],
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mul_comb(int nr, DIGIT Res[],
int na, const DIGIT A[],
int nb, const DIGIT B[]) {
int i, j, k;

crypto_kem/ledakemlt12/clean/gf2x_arith.h → crypto_kem/ledakemlt52/leaktime/gf2x_arith.h View File

@@ -48,11 +48,11 @@ typedef uint64_t DIGIT;
#define DIGIT_SIZE_b (DIGIT_SIZE_B << 3)
#define POSITION_T uint32_t

#define GF2X_MUL PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_mul_comb
#define GF2X_MUL PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mul_comb

void PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_add(DIGIT Res[], const DIGIT A[], const DIGIT B[], int nr);
void PQCLEAN_LEDAKEMLT12_CLEAN_right_bit_shift_n(int length, DIGIT in[], unsigned int amount);
void PQCLEAN_LEDAKEMLT12_CLEAN_left_bit_shift_n(int length, DIGIT in[], unsigned int amount);
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_add(DIGIT Res[], const DIGIT A[], const DIGIT B[], int nr);
void PQCLEAN_LEDAKEMLT52_LEAKTIME_right_bit_shift_n(int length, DIGIT in[], unsigned int amount);
void PQCLEAN_LEDAKEMLT52_LEAKTIME_left_bit_shift_n(int length, DIGIT in[], unsigned int amount);
void GF2X_MUL(int nr, DIGIT Res[], int na, const DIGIT A[], int nb, const DIGIT B[]);

#endif

crypto_kem/ledakemlt52/clean/gf2x_arith_mod_xPplusOne.c → crypto_kem/ledakemlt52/leaktime/gf2x_arith_mod_xPplusOne.c View File

@@ -5,14 +5,14 @@
#include <string.h> // memcpy(...), memset(...)


void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_copy(DIGIT dest[], const DIGIT in[]) {
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_copy(DIGIT dest[], const DIGIT in[]) {
for (int i = NUM_DIGITS_GF2X_ELEMENT - 1; i >= 0; i--) {
dest[i] = in[i];
}
}

/* returns the coefficient of the x^exponent term as the LSB of a digit */
DIGIT PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_get_coeff(const DIGIT poly[], unsigned int exponent) {
DIGIT PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_get_coeff(const DIGIT poly[], unsigned int exponent) {
unsigned int straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent;
unsigned int digitIdx = straightIdx / DIGIT_SIZE_b;
unsigned int inDigitIdx = straightIdx % DIGIT_SIZE_b;
@@ -20,7 +20,7 @@ DIGIT PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_get_coeff(const DIGIT poly[], unsigned int
}

/* sets the coefficient of the x^exponent term as the LSB of a digit */
void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_set_coeff(DIGIT poly[], unsigned int exponent, DIGIT value) {
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_set_coeff(DIGIT poly[], unsigned int exponent, DIGIT value) {
unsigned int straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent;
unsigned int digitIdx = straightIdx / DIGIT_SIZE_b;
unsigned int inDigitIdx = straightIdx % DIGIT_SIZE_b;
@@ -32,7 +32,7 @@ void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_set_coeff(DIGIT poly[], unsigned int exponen
}

/* toggles (flips) the coefficient of the x^exponent term as the LSB of a digit */
void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_toggle_coeff(DIGIT poly[], unsigned int exponent) {
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_toggle_coeff(DIGIT poly[], unsigned int exponent) {
unsigned int straightIdx = (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_b - 1) - exponent;
unsigned int digitIdx = straightIdx / DIGIT_SIZE_b;
unsigned int inDigitIdx = straightIdx % DIGIT_SIZE_b;
@@ -52,7 +52,7 @@ static int popcount_uint64t(uint64_t x) {
}

/* population count for a single polynomial */
int PQCLEAN_LEDAKEMLT52_CLEAN_population_count(DIGIT *poly) {
int PQCLEAN_LEDAKEMLT52_LEAKTIME_population_count(DIGIT *poly) {
int ret = 0;
for (int i = NUM_DIGITS_GF2X_ELEMENT - 1; i >= 0; i--) {
ret += popcount_uint64t(poly[i]);
@@ -60,8 +60,8 @@ int PQCLEAN_LEDAKEMLT52_CLEAN_population_count(DIGIT *poly) {
return ret;
}

void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_add(DIGIT Res[], const DIGIT A[], const DIGIT B[]) {
PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_add(Res, A, B, NUM_DIGITS_GF2X_ELEMENT);
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_add(DIGIT Res[], const DIGIT A[], const DIGIT B[]) {
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_add(Res, A, B, NUM_DIGITS_GF2X_ELEMENT);
}

static int partition(POSITION_T arr[], int lo, int hi) {
@@ -83,7 +83,7 @@ static int partition(POSITION_T arr[], int lo, int hi) {
return i + 1;
}

void PQCLEAN_LEDAKEMLT52_CLEAN_quicksort_sparse(POSITION_T Res[]) {
void PQCLEAN_LEDAKEMLT52_LEAKTIME_quicksort_sparse(POSITION_T Res[]) {
int stack[DV * M];
int hi, lo, pivot, tos = -1;
stack[++tos] = 0;
@@ -176,7 +176,7 @@ static void left_DIGIT_shift_n(unsigned int length, DIGIT in[], unsigned int amo
/* may shift by an arbitrary amount*/
static void left_bit_shift_wide_n(const int length, DIGIT in[], unsigned int amount) {
left_DIGIT_shift_n(length, in, amount / DIGIT_SIZE_b);
PQCLEAN_LEDAKEMLT52_CLEAN_left_bit_shift_n(length, in, amount % DIGIT_SIZE_b);
PQCLEAN_LEDAKEMLT52_LEAKTIME_left_bit_shift_n(length, in, amount % DIGIT_SIZE_b);
}

/* Hackers delight, reverses a uint64_t */
@@ -194,7 +194,7 @@ static DIGIT reverse_digit(DIGIT x) {
return x;
}

void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_transpose_in_place(DIGIT A[]) {
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_transpose_in_place(DIGIT A[]) {
/* it keeps the lsb in the same position and
* inverts the sequence of the remaining bits */

@@ -215,7 +215,7 @@ void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_transpose_in_place(DIGIT A[]) {
// A[NUM_DIGITS_GF2X_ELEMENT / 2] = reverse_digit(A[NUM_DIGITS_GF2X_ELEMENT / 2]); // no middle digit

if (slack_bits_amount) {
PQCLEAN_LEDAKEMLT52_CLEAN_right_bit_shift_n(NUM_DIGITS_GF2X_ELEMENT, A, slack_bits_amount);
PQCLEAN_LEDAKEMLT52_LEAKTIME_right_bit_shift_n(NUM_DIGITS_GF2X_ELEMENT, A, slack_bits_amount);
}
A[NUM_DIGITS_GF2X_ELEMENT - 1] = (A[NUM_DIGITS_GF2X_ELEMENT - 1] & (~mask)) | a00;
}
@@ -266,7 +266,7 @@ static void gf2x_swap(const int length, DIGIT f[], DIGIT s[]) {
* (Chapter 11 -- Algorithm 11.44 -- pag 223)
*
*/
int PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_inverse(DIGIT out[], const DIGIT in[]) { /* in^{-1} mod x^P-1 */
int PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_inverse(DIGIT out[], const DIGIT in[]) { /* in^{-1} mod x^P-1 */

int i;
int delta = 0;
@@ -300,8 +300,8 @@ int PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_inverse(DIGIT out[], const DIGIT in[]) {
delta += 1;
} else {
if ( (s[0] & mask) != 0) {
PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_add(s, s, f, NUM_DIGITS_GF2X_MODULUS);
PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_add(v, v, u);
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_add(s, s, f, NUM_DIGITS_GF2X_MODULUS);
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_add(v, v, u);
}
left_bit_shift(NUM_DIGITS_GF2X_MODULUS, s);
if ( delta == 0 ) {
@@ -323,7 +323,7 @@ int PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_inverse(DIGIT out[], const DIGIT in[]) {
return (delta == 0);
}

void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_mul(DIGIT Res[], const DIGIT A[], const DIGIT B[]) {
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_mul(DIGIT Res[], const DIGIT A[], const DIGIT B[]) {

DIGIT aux[2 * NUM_DIGITS_GF2X_ELEMENT];
GF2X_MUL(2 * NUM_DIGITS_GF2X_ELEMENT, aux,
@@ -335,7 +335,7 @@ void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_mul(DIGIT Res[], const DIGIT A[], const

/*PRE: the representation of the sparse coefficients is sorted in increasing
order of the coefficients themselves */
void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_mul_dense_to_sparse(
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_mul_dense_to_sparse(
DIGIT Res[],
const DIGIT dense[],
POSITION_T sparse[], unsigned int nPos) {
@@ -353,7 +353,7 @@ void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_mul_dense_to_sparse(
for (unsigned int i = 1; i < nPos; i++) {
if (sparse[i] != INVALID_POS_VALUE) {
left_bit_shift_wide_n(2 * NUM_DIGITS_GF2X_ELEMENT, aux, (sparse[i] - sparse[i - 1]) );
PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_add(resDouble, aux, resDouble, 2 * NUM_DIGITS_GF2X_ELEMENT);
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_add(resDouble, aux, resDouble, 2 * NUM_DIGITS_GF2X_ELEMENT);
}
}
}
@@ -362,7 +362,7 @@ void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_mul_dense_to_sparse(

}

void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_transpose_in_place_sparse(int sizeA, POSITION_T A[]) {
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_transpose_in_place_sparse(int sizeA, POSITION_T A[]) {

POSITION_T t;
int i = 0, j;
@@ -384,7 +384,7 @@ void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_transpose_in_place_sparse(int sizeA, POSITIO

}

void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_mul_sparse(size_t sizeR, POSITION_T Res[],
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_mul_sparse(size_t sizeR, POSITION_T Res[],
size_t sizeA, const POSITION_T A[],
size_t sizeB, const POSITION_T B[]) {

@@ -407,7 +407,7 @@ void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_mul_sparse(size_t sizeR, POSITION_T Res[
Res[lastFilledPos] = INVALID_POS_VALUE;
lastFilledPos++;
}
PQCLEAN_LEDAKEMLT52_CLEAN_quicksort_sparse(Res);
PQCLEAN_LEDAKEMLT52_LEAKTIME_quicksort_sparse(Res);
/* eliminate duplicates */
POSITION_T lastReadPos = Res[0];
int duplicateCount;
@@ -434,7 +434,7 @@ void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_mul_sparse(size_t sizeR, POSITION_T Res[

/* the implementation is safe even in case A or B alias with the result */
/* PRE: A and B should be sorted and have INVALID_POS_VALUE at the end */
void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_mod_add_sparse(
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_add_sparse(
int sizeR, POSITION_T Res[],
int sizeA, const POSITION_T A[],
int sizeB, const POSITION_T B[]) {
@@ -493,7 +493,7 @@ static uint32_t rand_range(const unsigned int n, const int logn, AES_XOF_struct
uint32_t mask = ( (uint32_t)1 << logn) - 1;

do {
PQCLEAN_LEDAKEMLT52_CLEAN_seedexpander(seed_expander_ctx, rnd_char_buffer, required_rnd_bytes);
PQCLEAN_LEDAKEMLT52_LEAKTIME_seedexpander(seed_expander_ctx, rnd_char_buffer, required_rnd_bytes);
/* obtain an endianness independent representation of the generated random
bytes into an unsigned integer */
rnd_value = ((uint32_t)rnd_char_buffer[3] << 24) +
@@ -508,7 +508,7 @@ static uint32_t rand_range(const unsigned int n, const int logn, AES_XOF_struct

/* Obtains fresh randomness and seed-expands it until all the required positions
* for the '1's in the circulant block are obtained */
void PQCLEAN_LEDAKEMLT52_CLEAN_rand_circulant_sparse_block(POSITION_T *pos_ones,
void PQCLEAN_LEDAKEMLT52_LEAKTIME_rand_circulant_sparse_block(POSITION_T *pos_ones,
int countOnes,
AES_XOF_struct *seed_expander_ctx) {

@@ -533,7 +533,7 @@ void PQCLEAN_LEDAKEMLT52_CLEAN_rand_circulant_sparse_block(POSITION_T *pos_ones,
}

/* Returns random weight-t circulant block */
void PQCLEAN_LEDAKEMLT52_CLEAN_rand_circulant_blocks_sequence(
void PQCLEAN_LEDAKEMLT52_LEAKTIME_rand_circulant_blocks_sequence(
DIGIT sequence[N0 * NUM_DIGITS_GF2X_ELEMENT],
AES_XOF_struct *seed_expander_ctx) {

@@ -559,13 +559,13 @@ void PQCLEAN_LEDAKEMLT52_CLEAN_rand_circulant_blocks_sequence(
for (int j = 0; j < counter; j++) {
polyIndex = rndPos[j] / P;
exponent = rndPos[j] % P;
PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_set_coeff( sequence + NUM_DIGITS_GF2X_ELEMENT * polyIndex, exponent,
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_set_coeff( sequence + NUM_DIGITS_GF2X_ELEMENT * polyIndex, exponent,
( (DIGIT) 1));
}

}

void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_tobytes(uint8_t *bytes, const DIGIT *poly) {
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_tobytes(uint8_t *bytes, const DIGIT *poly) {
size_t i, j;
for (i = 0; i < NUM_DIGITS_GF2X_ELEMENT; i++) {
for (j = 0; j < DIGIT_SIZE_B; j++) {
@@ -574,7 +574,7 @@ void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_tobytes(uint8_t *bytes, const DIGIT *poly) {
}
}

void PQCLEAN_LEDAKEMLT52_CLEAN_gf2x_frombytes(DIGIT *poly, const uint8_t *poly_bytes) {
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_frombytes(DIGIT *poly, const uint8_t *poly_bytes) {
size_t i, j;
for (i = 0; i < NUM_DIGITS_GF2X_ELEMENT; i++) {
poly[i] = (DIGIT) 0;

+ 37
- 0
crypto_kem/ledakemlt52/leaktime/gf2x_arith_mod_xPplusOne.h View File

@@ -0,0 +1,37 @@
#ifndef GF2X_ARITH_MOD_XPLUSONE_H
#define GF2X_ARITH_MOD_XPLUSONE_H

#include "qc_ldpc_parameters.h"

#include "gf2x_arith.h"
#include "rng.h"

#define NUM_BITS_GF2X_ELEMENT (P) // 152267
#define NUM_DIGITS_GF2X_ELEMENT ((P+DIGIT_SIZE_b-1)/DIGIT_SIZE_b) // 2380
#define MSb_POSITION_IN_MSB_DIGIT_OF_ELEMENT ((P % DIGIT_SIZE_b) ? (P % DIGIT_SIZE_b)-1 : DIGIT_SIZE_b-1)
#define NUM_BITS_GF2X_MODULUS (P+1)
#define NUM_DIGITS_GF2X_MODULUS ((P+1+DIGIT_SIZE_b-1)/DIGIT_SIZE_b) // 2380
#define MSb_POSITION_IN_MSB_DIGIT_OF_MODULUS (P-DIGIT_SIZE_b*(NUM_DIGITS_GF2X_MODULUS-1))
#define INVALID_POS_VALUE (P)
#define P_BITS (18) // log_2(p) = 17.216243783

void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_copy(DIGIT dest[], const DIGIT in[]);
DIGIT PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_get_coeff(const DIGIT poly[], unsigned int exponent);
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_set_coeff(DIGIT poly[], unsigned int exponent, DIGIT value);
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_toggle_coeff(DIGIT poly[], unsigned int exponent);
int PQCLEAN_LEDAKEMLT52_LEAKTIME_population_count(DIGIT *poly);
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_add(DIGIT Res[], const DIGIT A[], const DIGIT B[]);
void PQCLEAN_LEDAKEMLT52_LEAKTIME_quicksort_sparse(POSITION_T Res[]);
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_mul(DIGIT Res[], const DIGIT A[], const DIGIT B[]);
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_transpose_in_place(DIGIT A[]);
void PQCLEAN_LEDAKEMLT52_LEAKTIME_rand_circulant_sparse_block(POSITION_T *pos_ones, int countOnes, AES_XOF_struct *seed_expander_ctx);
void PQCLEAN_LEDAKEMLT52_LEAKTIME_rand_circulant_blocks_sequence(DIGIT *sequence, AES_XOF_struct *seed_expander_ctx);
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_add_sparse(int sizeR, POSITION_T Res[], int sizeA, const POSITION_T A[], int sizeB, const POSITION_T B[]);
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_transpose_in_place_sparse(int sizeA, POSITION_T A[]);
int PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_inverse(DIGIT out[], const DIGIT in[]);
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_mul_sparse(size_t sizeR, POSITION_T Res[], size_t sizeA, const POSITION_T A[], size_t sizeB, const POSITION_T B[]);
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_mul_dense_to_sparse(DIGIT Res[], const DIGIT dense[], POSITION_T sparse[], unsigned int nPos);
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_tobytes(uint8_t *bytes, const DIGIT *poly);
void PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_frombytes(DIGIT *poly, const uint8_t *poly_bytes);

#endif

crypto_kem/ledakemlt12/clean/kem.c → crypto_kem/ledakemlt52/leaktime/kem.c View File

@@ -8,43 +8,43 @@
static void pack_pk(uint8_t *pk_bytes, publicKeyNiederreiter_t *pk) {
size_t i;
for (i = 0; i < N0 - 1; i++) {
PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_tobytes(pk_bytes + i * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B,
pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT);
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_tobytes(pk_bytes + i * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B,
pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT);
}
}

static void unpack_pk(publicKeyNiederreiter_t *pk, const uint8_t *pk_bytes) {
size_t i;
for (i = 0; i < N0 - 1; i++) {
PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_frombytes(pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT,
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_frombytes(pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT,
pk_bytes + i * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B);
}
}

static void pack_ct(uint8_t *sk_bytes, DIGIT *ct) {
PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_tobytes(sk_bytes, ct);
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_tobytes(sk_bytes, ct);
}

static void unpack_ct(DIGIT *ct, const uint8_t *ct_bytes) {
PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_frombytes(ct, ct_bytes);
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_frombytes(ct, ct_bytes);
}

static void pack_error(uint8_t *error_bytes, DIGIT *error_digits) {
size_t i;
for (i = 0; i < N0; i++) {
PQCLEAN_LEDAKEMLT12_CLEAN_gf2x_tobytes(error_bytes + i * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B,
error_digits + i * NUM_DIGITS_GF2X_ELEMENT);
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_tobytes(error_bytes + i * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B,
error_digits + i * NUM_DIGITS_GF2X_ELEMENT);
}
}

/* Generates a keypair - pk is the public key and sk is the secret key. */
int PQCLEAN_LEDAKEMLT12_CLEAN_crypto_kem_keypair(unsigned char *pk, unsigned char *sk) {
int PQCLEAN_LEDAKEMLT52_LEAKTIME_crypto_kem_keypair(unsigned char *pk, unsigned char *sk) {
AES_XOF_struct niederreiter_keys_expander;
publicKeyNiederreiter_t pk_nie;

randombytes(((privateKeyNiederreiter_t *)sk)->prng_seed, TRNG_BYTE_LENGTH);
PQCLEAN_LEDAKEMLT12_CLEAN_seedexpander_from_trng(&niederreiter_keys_expander, ((privateKeyNiederreiter_t *)sk)->prng_seed);
PQCLEAN_LEDAKEMLT12_CLEAN_niederreiter_keygen(&pk_nie, (privateKeyNiederreiter_t *) sk, &niederreiter_keys_expander);
PQCLEAN_LEDAKEMLT52_LEAKTIME_seedexpander_from_trng(&niederreiter_keys_expander, ((privateKeyNiederreiter_t *)sk)->prng_seed);
PQCLEAN_LEDAKEMLT52_LEAKTIME_niederreiter_keygen(&pk_nie, (privateKeyNiederreiter_t *) sk, &niederreiter_keys_expander);

pack_pk(pk, &pk_nie);

@@ -53,7 +53,7 @@ int PQCLEAN_LEDAKEMLT12_CLEAN_crypto_kem_keypair(unsigned char *pk, unsigned cha

/* Encrypt - pk is the public key, ct is a key encapsulation message
(ciphertext), ss is the shared secret.*/
int PQCLEAN_LEDAKEMLT12_CLEAN_crypto_kem_enc(unsigned char *ct, unsigned char *ss, const unsigned char *pk) {
int PQCLEAN_LEDAKEMLT52_LEAKTIME_crypto_kem_enc(unsigned char *ct, unsigned char *ss, const unsigned char *pk) {
AES_XOF_struct niederreiter_encap_key_expander;
unsigned char encapsulated_key_seed[TRNG_BYTE_LENGTH];
DIGIT error_vector[N0 * NUM_DIGITS_GF2X_ELEMENT];
@@ -64,11 +64,11 @@ int PQCLEAN_LEDAKEMLT12_CLEAN_crypto_kem_enc(unsigned char *ct, unsigned char *s
randombytes(encapsulated_key_seed, TRNG_BYTE_LENGTH);
unpack_pk(&pk_nie, pk);

PQCLEAN_LEDAKEMLT12_CLEAN_seedexpander_from_trng(&niederreiter_encap_key_expander, encapsulated_key_seed);
PQCLEAN_LEDAKEMLT12_CLEAN_rand_circulant_blocks_sequence(error_vector, &niederreiter_encap_key_expander);
PQCLEAN_LEDAKEMLT52_LEAKTIME_seedexpander_from_trng(&niederreiter_encap_key_expander, encapsulated_key_seed);
PQCLEAN_LEDAKEMLT52_LEAKTIME_rand_circulant_blocks_sequence(error_vector, &niederreiter_encap_key_expander);
pack_error(error_bytes, error_vector);
HASH_FUNCTION(ss, error_bytes, (N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B));
PQCLEAN_LEDAKEMLT12_CLEAN_niederreiter_encrypt(syndrome, &pk_nie, error_vector);
PQCLEAN_LEDAKEMLT52_LEAKTIME_niederreiter_encrypt(syndrome, &pk_nie, error_vector);

pack_ct(ct, syndrome);

@@ -78,13 +78,13 @@ int PQCLEAN_LEDAKEMLT12_CLEAN_crypto_kem_enc(unsigned char *ct, unsigned char *s

/* Decrypt - ct is a key encapsulation message (ciphertext), sk is the private
key, ss is the shared secret */
int PQCLEAN_LEDAKEMLT12_CLEAN_crypto_kem_dec(unsigned char *ss, const unsigned char *ct, const unsigned char *sk) {
int PQCLEAN_LEDAKEMLT52_LEAKTIME_crypto_kem_dec(unsigned char *ss, const unsigned char *ct, const unsigned char *sk) {
DIGIT decoded_error_vector[N0 * NUM_DIGITS_GF2X_ELEMENT];
uint8_t decoded_error_bytes[N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B];
DIGIT syndrome[NUM_DIGITS_GF2X_ELEMENT];

unpack_ct(syndrome, ct);
PQCLEAN_LEDAKEMLT12_CLEAN_niederreiter_decrypt(decoded_error_vector, (privateKeyNiederreiter_t *)sk, syndrome);
PQCLEAN_LEDAKEMLT52_LEAKTIME_niederreiter_decrypt(decoded_error_vector, (privateKeyNiederreiter_t *)sk, syndrome);
pack_error(decoded_error_bytes, decoded_error_vector);
HASH_FUNCTION(ss, decoded_error_bytes, (N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B));


crypto_kem/ledakemlt32/clean/niederreiter.c → crypto_kem/ledakemlt52/leaktime/niederreiter.c View File

@@ -8,7 +8,7 @@

#include <string.h>

void PQCLEAN_LEDAKEMLT32_CLEAN_niederreiter_keygen(publicKeyNiederreiter_t *pk, privateKeyNiederreiter_t *sk, AES_XOF_struct *keys_expander) {
void PQCLEAN_LEDAKEMLT52_LEAKTIME_niederreiter_keygen(publicKeyNiederreiter_t *pk, privateKeyNiederreiter_t *sk, AES_XOF_struct *keys_expander) {

POSITION_T HPosOnes[N0][DV]; // sequence of N0 circ block matrices (p x p): Hi
POSITION_T HtrPosOnes[N0][DV]; // Sparse tranposed circulant H
@@ -23,8 +23,8 @@ void PQCLEAN_LEDAKEMLT32_CLEAN_niederreiter_keygen(publicKeyNiederreiter_t *pk,
sk->rejections = (int8_t) 0;

do {
PQCLEAN_LEDAKEMLT32_CLEAN_generateHPosOnes_HtrPosOnes(HPosOnes, HtrPosOnes, keys_expander);
PQCLEAN_LEDAKEMLT32_CLEAN_generateQsparse(QPosOnes, keys_expander);
PQCLEAN_LEDAKEMLT52_LEAKTIME_generateHPosOnes_HtrPosOnes(HPosOnes, HtrPosOnes, keys_expander);
PQCLEAN_LEDAKEMLT52_LEAKTIME_generateQsparse(QPosOnes, keys_expander);
for (int i = 0; i < N0; i++) {
for (int j = 0; j < DV * M; j++) {
LPosOnes[i][j] = INVALID_POS_VALUE;
@@ -34,10 +34,10 @@ void PQCLEAN_LEDAKEMLT32_CLEAN_niederreiter_keygen(publicKeyNiederreiter_t *pk,
memset(processedQOnes, 0x00, sizeof(processedQOnes));
for (int colQ = 0; colQ < N0; colQ++) {
for (int i = 0; i < N0; i++) {
PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_mul_sparse(DV * M, auxPosOnes,
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_mul_sparse(DV * M, auxPosOnes,
DV, HPosOnes[i],
qBlockWeights[i][colQ], QPosOnes[i] + processedQOnes[i]);
PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_add_sparse(DV * M, LPosOnes[colQ],
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_add_sparse(DV * M, LPosOnes[colQ],
DV * M, LPosOnes[colQ],
DV * M, auxPosOnes);
processedQOnes[i] += qBlockWeights[i][colQ];
@@ -49,7 +49,7 @@ void PQCLEAN_LEDAKEMLT32_CLEAN_niederreiter_keygen(publicKeyNiederreiter_t *pk,
}
sk->rejections = sk->rejections + 1;
if (is_L_full) {
threshold = PQCLEAN_LEDAKEMLT32_CLEAN_DFR_test(LPosOnes);
threshold = PQCLEAN_LEDAKEMLT52_LEAKTIME_DFR_test(LPosOnes);
}
} while (!is_L_full || threshold == DFR_TEST_FAIL);
sk->rejections = sk->rejections - 1;
@@ -58,41 +58,41 @@ void PQCLEAN_LEDAKEMLT32_CLEAN_niederreiter_keygen(publicKeyNiederreiter_t *pk,
memset(Ln0dense, 0x00, sizeof(Ln0dense));
for (int j = 0; j < DV * M; j++) {
if (LPosOnes[N0 - 1][j] != INVALID_POS_VALUE) {
PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_set_coeff(Ln0dense, LPosOnes[N0 - 1][j], 1);
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_set_coeff(Ln0dense, LPosOnes[N0 - 1][j], 1);
}
}

memset(Ln0Inv, 0x00, sizeof(Ln0Inv));
PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_inverse(Ln0Inv, Ln0dense);
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_inverse(Ln0Inv, Ln0dense);
for (int i = 0; i < N0 - 1; i++) {
PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_mul_dense_to_sparse(pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT,
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_mul_dense_to_sparse(pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT,
Ln0Inv,
LPosOnes[i],
DV * M);
}

for (int i = 0; i < N0 - 1; i++) {
PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_transpose_in_place(pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT);
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_transpose_in_place(pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT);
}
}


void PQCLEAN_LEDAKEMLT32_CLEAN_niederreiter_encrypt(DIGIT *syndrome, const publicKeyNiederreiter_t *pk, const DIGIT *err) {
void PQCLEAN_LEDAKEMLT52_LEAKTIME_niederreiter_encrypt(DIGIT *syndrome, const publicKeyNiederreiter_t *pk, const DIGIT *err) {
int i;
DIGIT saux[NUM_DIGITS_GF2X_ELEMENT];

memset(syndrome, 0x00, NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B);
for (i = 0; i < N0 - 1; i++) {
PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_mul(saux,
pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT,
err + i * NUM_DIGITS_GF2X_ELEMENT);
PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_add(syndrome, syndrome, saux);
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_mul(saux,
pk->Mtr + i * NUM_DIGITS_GF2X_ELEMENT,
err + i * NUM_DIGITS_GF2X_ELEMENT);
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_add(syndrome, syndrome, saux);
}
PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_add(syndrome, syndrome, err + (N0 - 1)*NUM_DIGITS_GF2X_ELEMENT);
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_add(syndrome, syndrome, err + (N0 - 1)*NUM_DIGITS_GF2X_ELEMENT);
}


int PQCLEAN_LEDAKEMLT32_CLEAN_niederreiter_decrypt(DIGIT *err, const privateKeyNiederreiter_t *sk, const DIGIT *syndrome) {
int PQCLEAN_LEDAKEMLT52_LEAKTIME_niederreiter_decrypt(DIGIT *err, const privateKeyNiederreiter_t *sk, const DIGIT *syndrome) {
AES_XOF_struct niederreiter_decrypt_expander;
POSITION_T HPosOnes[N0][DV];
POSITION_T HtrPosOnes[N0][DV];
@@ -110,11 +110,11 @@ int PQCLEAN_LEDAKEMLT32_CLEAN_niederreiter_decrypt(DIGIT *err, const privateKeyN
int currQoneIdx, endQblockIdx;
int decryptOk, err_weight;

PQCLEAN_LEDAKEMLT32_CLEAN_seedexpander_from_trng(&niederreiter_decrypt_expander, sk->prng_seed);
PQCLEAN_LEDAKEMLT52_LEAKTIME_seedexpander_from_trng(&niederreiter_decrypt_expander, sk->prng_seed);

do {
PQCLEAN_LEDAKEMLT32_CLEAN_generateHPosOnes_HtrPosOnes(HPosOnes, HtrPosOnes, &niederreiter_decrypt_expander);
PQCLEAN_LEDAKEMLT32_CLEAN_generateQsparse(QPosOnes, &niederreiter_decrypt_expander);
PQCLEAN_LEDAKEMLT52_LEAKTIME_generateHPosOnes_HtrPosOnes(HPosOnes, HtrPosOnes, &niederreiter_decrypt_expander);
PQCLEAN_LEDAKEMLT52_LEAKTIME_generateQsparse(QPosOnes, &niederreiter_decrypt_expander);
for (int i = 0; i < N0; i++) {
for (int j = 0; j < DV * M; j++) {
LPosOnes[i][j] = INVALID_POS_VALUE;
@@ -124,10 +124,10 @@ int PQCLEAN_LEDAKEMLT32_CLEAN_niederreiter_decrypt(DIGIT *err, const privateKeyN
memset(processedQOnes, 0x00, sizeof(processedQOnes));
for (int colQ = 0; colQ < N0; colQ++) {
for (int i = 0; i < N0; i++) {
PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_mul_sparse(DV * M, auxPosOnes,
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_mul_sparse(DV * M, auxPosOnes,
DV, HPosOnes[i],
qBlockWeights[i][colQ], QPosOnes[i] + processedQOnes[i]);
PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_add_sparse(DV * M, LPosOnes[colQ],
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_add_sparse(DV * M, LPosOnes[colQ],
DV * M, LPosOnes[colQ],
DV * M, auxPosOnes);
processedQOnes[i] += qBlockWeights[i][colQ];
@@ -156,31 +156,31 @@ int PQCLEAN_LEDAKEMLT32_CLEAN_niederreiter_decrypt(DIGIT *err, const privateKeyN
}

for (int i = 0; i < N0; i++) {
PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_mul_sparse(DV * M, auxSparse,
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_mul_sparse(DV * M, auxSparse,
DV, HPosOnes[i],
qBlockWeights[i][N0 - 1], &QPosOnes[i][ M - qBlockWeights[i][N0 - 1]]);
PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_add_sparse(DV * M, Ln0trSparse,
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_add_sparse(DV * M, Ln0trSparse,
DV * M, Ln0trSparse,
DV * M, auxSparse);
}

PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_transpose_in_place_sparse(DV * M, Ln0trSparse);
PQCLEAN_LEDAKEMLT32_CLEAN_gf2x_mod_mul_dense_to_sparse(privateSyndrome, syndrome, Ln0trSparse, DV * M);
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_transpose_in_place_sparse(DV * M, Ln0trSparse);
PQCLEAN_LEDAKEMLT52_LEAKTIME_gf2x_mod_mul_dense_to_sparse(privateSyndrome, syndrome, Ln0trSparse, DV * M);

/* prepare mockup error vector in case a decoding failure occurs */
memset(mockup_error_vector, 0x00, N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B);
memcpy(mockup_error_vector, syndrome, NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B);
PQCLEAN_LEDAKEMLT32_CLEAN_seedexpander(&niederreiter_decrypt_expander,
((unsigned char *) mockup_error_vector) + (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B),
TRNG_BYTE_LENGTH);
PQCLEAN_LEDAKEMLT52_LEAKTIME_seedexpander(&niederreiter_decrypt_expander,
((unsigned char *) mockup_error_vector) + (NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B),
TRNG_BYTE_LENGTH);

memset(err, 0x00, N0 * NUM_DIGITS_GF2X_ELEMENT * DIGIT_SIZE_B);
decryptOk = PQCLEAN_LEDAKEMLT32_CLEAN_bf_decoding(err, (const POSITION_T (*)[DV]) HtrPosOnes,
decryptOk = PQCLEAN_LEDAKEMLT52_LEAKTIME_bf_decoding(err, (const POSITION_T (*)[DV]) HtrPosOnes,
(const POSITION_T (*)[M]) QtrPosOnes, privateSyndrome, sk->threshold);

err_weight = 0;
for (int i = 0 ; i < N0; i++) {
err_weight += PQCLEAN_LEDAKEMLT32_CLEAN_population_count(err + (NUM_DIGITS_GF2X_ELEMENT * i));
err_weight += PQCLEAN_LEDAKEMLT52_LEAKTIME_population_count(err + (NUM_DIGITS_GF2X_ELEMENT * i));
}
decryptOk = decryptOk && (err_weight == NUM_ERRORS_T);


crypto_kem/ledakemlt32/clean/niederreiter.h → crypto_kem/ledakemlt52/leaktime/niederreiter.h View File

@@ -21,9 +21,9 @@ typedef struct {
// with P coefficients.
} publicKeyNiederreiter_t;

void PQCLEAN_LEDAKEMLT32_CLEAN_niederreiter_keygen(publicKeyNiederreiter_t *pk, privateKeyNiederreiter_t *sk, AES_XOF_struct *keys_expander);
void PQCLEAN_LEDAKEMLT32_CLEAN_niederreiter_encrypt(DIGIT syndrome[], const publicKeyNiederreiter_t *pk, const DIGIT *err);
int PQCLEAN_LEDAKEMLT32_CLEAN_niederreiter_decrypt(DIGIT *err, const privateKeyNiederreiter_t *sk, const DIGIT *syndrome);
void PQCLEAN_LEDAKEMLT52_LEAKTIME_niederreiter_keygen(publicKeyNiederreiter_t *pk, privateKeyNiederreiter_t *sk, AES_XOF_struct *keys_expander);
void PQCLEAN_LEDAKEMLT52_LEAKTIME_niederreiter_encrypt(DIGIT syndrome[], const publicKeyNiederreiter_t *pk, const DIGIT *err);
int PQCLEAN_LEDAKEMLT52_LEAKTIME_niederreiter_decrypt(DIGIT *err, const privateKeyNiederreiter_t *sk, const DIGIT *syndrome);


#endif

crypto_kem/ledakemlt52/clean/qc_ldpc_parameters.h → crypto_kem/ledakemlt52/leaktime/qc_ldpc_parameters.h View File


crypto_kem/ledakemlt52/clean/rng.c → crypto_kem/ledakemlt52/leaktime/rng.c View File

@@ -37,7 +37,7 @@ static void seedexpander_init(AES_XOF_struct *ctx,
memset(ctx->buffer, 0x00, 16);
}

void PQCLEAN_LEDAKEMLT52_CLEAN_seedexpander_from_trng(AES_XOF_struct *ctx,
void PQCLEAN_LEDAKEMLT52_LEAKTIME_seedexpander_from_trng(AES_XOF_struct *ctx,
const unsigned char *trng_entropy
/* TRNG_BYTE_LENGTH wide buffer */) {

@@ -61,7 +61,7 @@ void PQCLEAN_LEDAKEMLT52_CLEAN_seedexpander_from_trng(AES_XOF_struct *ctx,
x - returns the XOF data
xlen - number of bytes to return
*/
int PQCLEAN_LEDAKEMLT52_CLEAN_seedexpander(AES_XOF_struct *ctx, unsigned char *x, size_t xlen) {
int PQCLEAN_LEDAKEMLT52_LEAKTIME_seedexpander(AES_XOF_struct *ctx, unsigned char *x, size_t xlen) {
size_t offset;
aes256ctx ctx256;


crypto_kem/ledakemlt32/clean/rng.h → crypto_kem/ledakemlt52/leaktime/rng.h View File

@@ -18,7 +18,7 @@ typedef struct {
unsigned char ctr[16];
} AES_XOF_struct;

int PQCLEAN_LEDAKEMLT32_CLEAN_seedexpander(AES_XOF_struct *ctx, unsigned char *x, size_t xlen);
void PQCLEAN_LEDAKEMLT32_CLEAN_seedexpander_from_trng(AES_XOF_struct *ctx, const unsigned char *trng_entropy);
int PQCLEAN_LEDAKEMLT52_LEAKTIME_seedexpander(AES_XOF_struct *ctx, unsigned char *x, size_t xlen);
void PQCLEAN_LEDAKEMLT52_LEAKTIME_seedexpander_from_trng(AES_XOF_struct *ctx, const unsigned char *trng_entropy);

#endif

Loading…
Cancel
Save