1
1
mirror of https://github.com/henrydcase/pqc.git synced 2024-11-27 09:51:30 +00:00
pqcrypto/crypto_kem/ledakemlt12/leaktime/dfr_test.c
2019-06-16 17:01:29 +02:00

113 lines
4.4 KiB
C

#include "bf_decoding.h"
#include "dfr_test.h"
#include "gf2x_arith_mod_xPplusOne.h"
#include "qc_ldpc_parameters.h"
#include <string.h>
/* Tests if the current code attains the desired DFR. If that is the case,
* computes the threshold for the second iteration of the decoder and returns this values
* (max DV * M), on failure it returns 255 >> DV * M */
uint8_t PQCLEAN_LEDAKEMLT12_LEAKTIME_DFR_test(POSITION_T LSparse[N0][DV * M]) {
POSITION_T LSparse_loc[N0][DV * M];
POSITION_T rotated_column[DV * M];
/* Gamma matrix: an N0 x N0 block circulant matrix with block size p
* gamma[a][b][c] stores the intersection of the first column of the a-th
* block of L with the c-th column of the b-th block of L.
* Gamma computation can be accelerated employing symmetry and QC properties */
unsigned int gamma[N0][N0][P] = {{{0}}};
unsigned int gammaHist[N0][DV * M + 1] = {{0}};
unsigned int maxMut[N0], maxMutMinusOne[N0];
unsigned int firstidx, secondidx, intersectionval;
unsigned int allBlockMaxSumst, allBlockMaxSumstMinusOne;
unsigned int toAdd, histIdx;
/*transpose blocks of L, we need its columns */
for (int i = 0; i < N0; i++) {
for (int j = 0; j < DV * M; j++) {
if (LSparse[i][j] != 0) {
LSparse_loc[i][j] = (P - LSparse[i][j]);
}
}
PQCLEAN_LEDAKEMLT12_LEAKTIME_quicksort_sparse(LSparse_loc[i]);
}
for (int i = 0; i < N0; i++ ) {
for (int j = 0; j < N0; j++ ) {
for (int k = 0; k < P; k++) {
/* compute the rotated sparse column needed */
for (int idxToRotate = 0; idxToRotate < (DV * M); idxToRotate++) {
rotated_column[idxToRotate] = (LSparse_loc[j][idxToRotate] + k) % P;
}
PQCLEAN_LEDAKEMLT12_LEAKTIME_quicksort_sparse(rotated_column);
/* compute the intersection amount */
firstidx = 0, secondidx = 0;
intersectionval = 0;
while ( (firstidx < DV * M) && (secondidx < DV * M) ) {
if ( LSparse_loc[i][firstidx] == rotated_column[secondidx] ) {
intersectionval++;
firstidx++;
secondidx++;
} else if ( LSparse_loc[i][firstidx] > rotated_column[secondidx] ) {
secondidx++;
} else { /*if ( LSparse_loc[i][firstidx] < rotated_column[secondidx] ) */
firstidx++;
}
}
gamma[i][j][k] = intersectionval;
}
}
}
for (int i = 0; i < N0; i++ ) {
for (int j = 0; j < N0; j++ ) {
gamma[i][j][0] = 0;
}
}
/* build histogram of values in gamma */
for (int i = 0; i < N0; i++ ) {
for (int j = 0; j < N0; j++ ) {
for (int k = 0; k < P; k++) {
gammaHist[i][gamma[i][j][k]]++;
}
}
}
for (int gammaBlockRowIdx = 0; gammaBlockRowIdx < N0; gammaBlockRowIdx++) {
toAdd = T_BAR - 1;
maxMutMinusOne[gammaBlockRowIdx] = 0;
histIdx = DV * M;
while ( (histIdx > 0) && (toAdd > 0)) {
if (gammaHist[gammaBlockRowIdx][histIdx] > toAdd ) {
maxMutMinusOne[gammaBlockRowIdx] += histIdx * toAdd;
toAdd = 0;
} else {
maxMutMinusOne[gammaBlockRowIdx] += histIdx * gammaHist[gammaBlockRowIdx][histIdx];
toAdd -= gammaHist[gammaBlockRowIdx][histIdx];
histIdx--;
}
}
maxMut[gammaBlockRowIdx] = histIdx + maxMutMinusOne[gammaBlockRowIdx];
}
/*seek max values across all gamma blocks */
allBlockMaxSumst = maxMut[0];
allBlockMaxSumstMinusOne = maxMutMinusOne[0];
for (int gammaBlockRowIdx = 0; gammaBlockRowIdx < N0 ; gammaBlockRowIdx++) {
allBlockMaxSumst = allBlockMaxSumst < maxMut[gammaBlockRowIdx] ?
maxMut[gammaBlockRowIdx] :
allBlockMaxSumst;
allBlockMaxSumstMinusOne = allBlockMaxSumstMinusOne < maxMutMinusOne[gammaBlockRowIdx] ?
maxMutMinusOne[gammaBlockRowIdx] :
allBlockMaxSumstMinusOne;
}
if (DV * M > (allBlockMaxSumstMinusOne + allBlockMaxSumst)) {
return (uint8_t) allBlockMaxSumst + 1;
}
return DFR_TEST_FAIL;
}