A large number of functions was repeated in xmss_fast; these are now shared between the two implementations via the xmss_commons file. Notably, we ensure compatability by sharing the verification functions.master
@@ -22,78 +22,6 @@ Public domain. | |||
// For testing | |||
#include "stdio.h" | |||
/** | |||
* Used for pseudorandom keygeneration, | |||
* generates the seed for the WOTS keypair at address addr | |||
* | |||
* takes XMSS_N byte sk_seed and returns XMSS_N byte seed using 32 byte address addr. | |||
*/ | |||
static void get_seed(unsigned char *seed, const unsigned char *sk_seed, uint32_t addr[8]) | |||
{ | |||
unsigned char bytes[32]; | |||
// Make sure that chain addr, hash addr, and key bit are 0! | |||
setChainADRS(addr, 0); | |||
setHashADRS(addr, 0); | |||
setKeyAndMask(addr, 0); | |||
// Generate pseudorandom value | |||
addr_to_byte(bytes, addr); | |||
prf(seed, bytes, sk_seed, XMSS_N); | |||
} | |||
/** | |||
* Computes a leaf from a WOTS public key using an L-tree. | |||
*/ | |||
static void l_tree(unsigned char *leaf, unsigned char *wots_pk, const unsigned char *pub_seed, uint32_t addr[8]) | |||
{ | |||
unsigned int l = XMSS_WOTS_LEN; | |||
uint32_t i = 0; | |||
uint32_t height = 0; | |||
uint32_t bound; | |||
//ADRS.setTreeHeight(0); | |||
setTreeHeight(addr, height); | |||
while (l > 1) { | |||
bound = l >> 1; //floor(l / 2); | |||
for (i = 0; i < bound; i++) { | |||
//ADRS.setTreeIndex(i); | |||
setTreeIndex(addr, i); | |||
//wots_pk[i] = RAND_HASH(pk[2i], pk[2i + 1], SEED, ADRS); | |||
hash_h(wots_pk+i*XMSS_N, wots_pk+i*2*XMSS_N, pub_seed, addr, XMSS_N); | |||
} | |||
//if ( l % 2 == 1 ) { | |||
if (l & 1) { | |||
//pk[floor(l / 2) + 1] = pk[l]; | |||
memcpy(wots_pk+(l>>1)*XMSS_N, wots_pk+(l-1)*XMSS_N, XMSS_N); | |||
//l = ceil(l / 2); | |||
l=(l>>1)+1; | |||
} | |||
else { | |||
//l = ceil(l / 2); | |||
l=(l>>1); | |||
} | |||
//ADRS.setTreeHeight(ADRS.getTreeHeight() + 1); | |||
height++; | |||
setTreeHeight(addr, height); | |||
} | |||
//return pk[0]; | |||
memcpy(leaf, wots_pk, XMSS_N); | |||
} | |||
/** | |||
* Computes the leaf at a given address. First generates the WOTS key pair, then computes leaf using l_tree. As this happens position independent, we only require that addr encodes the right ltree-address. | |||
*/ | |||
static void gen_leaf_wots(unsigned char *leaf, const unsigned char *sk_seed, const unsigned char *pub_seed, uint32_t ltree_addr[8], uint32_t ots_addr[8]) | |||
{ | |||
unsigned char seed[XMSS_N]; | |||
unsigned char pk[XMSS_WOTS_KEYSIZE]; | |||
get_seed(seed, sk_seed, ots_addr); | |||
wots_pkgen(pk, seed, pub_seed, ots_addr); | |||
l_tree(leaf, pk, pub_seed, ltree_addr); | |||
} | |||
/** | |||
* Merkle's TreeHash algorithm. The address only needs to initialize the first 78 bits of addr. Everything else will be set by treehash. | |||
* Currently only used for key generation. | |||
@@ -141,52 +69,6 @@ static void treehash(unsigned char *node, uint16_t height, uint32_t index, const | |||
node[i] = stack[i]; | |||
} | |||
/** | |||
* Computes a root node given a leaf and an authapth | |||
*/ | |||
static void validate_authpath(unsigned char *root, const unsigned char *leaf, unsigned long leafidx, const unsigned char *authpath, const unsigned char *pub_seed, uint32_t addr[8]) | |||
{ | |||
uint32_t i, j; | |||
unsigned char buffer[2*XMSS_N]; | |||
// If leafidx is odd (last bit = 1), current path element is a right child and authpath has to go to the left. | |||
// Otherwise, it is the other way around | |||
if (leafidx & 1) { | |||
for (j = 0; j < XMSS_N; j++) | |||
buffer[XMSS_N+j] = leaf[j]; | |||
for (j = 0; j < XMSS_N; j++) | |||
buffer[j] = authpath[j]; | |||
} | |||
else { | |||
for (j = 0; j < XMSS_N; j++) | |||
buffer[j] = leaf[j]; | |||
for (j = 0; j < XMSS_N; j++) | |||
buffer[XMSS_N+j] = authpath[j]; | |||
} | |||
authpath += XMSS_N; | |||
for (i=0; i < XMSS_TREEHEIGHT-1; i++) { | |||
setTreeHeight(addr, i); | |||
leafidx >>= 1; | |||
setTreeIndex(addr, leafidx); | |||
if (leafidx&1) { | |||
hash_h(buffer+XMSS_N, buffer, pub_seed, addr, XMSS_N); | |||
for (j = 0; j < XMSS_N; j++) | |||
buffer[j] = authpath[j]; | |||
} | |||
else { | |||
hash_h(buffer, buffer, pub_seed, addr, XMSS_N); | |||
for (j = 0; j < XMSS_N; j++) | |||
buffer[j+XMSS_N] = authpath[j]; | |||
} | |||
authpath += XMSS_N; | |||
} | |||
setTreeHeight(addr, (XMSS_TREEHEIGHT-1)); | |||
leafidx >>= 1; | |||
setTreeIndex(addr, leafidx); | |||
hash_h(root, buffer, pub_seed, addr, XMSS_N); | |||
} | |||
/** | |||
* Computes the authpath and the root. This method is using a lot of space as we build the whole tree and then select the authpath nodes. | |||
* For more efficient algorithms see e.g. the chapter on hash-based signatures in Bernstein, Buchmann, Dahmen. "Post-quantum Cryptography", Springer 2009. | |||
@@ -369,91 +251,6 @@ int xmss_sign(unsigned char *sk, unsigned char *sig_msg, unsigned long long *sig | |||
return 0; | |||
} | |||
/** | |||
* Verifies a given message signature pair under a given public key. | |||
*/ | |||
int xmss_sign_open(unsigned char *msg, unsigned long long *msglen, const unsigned char *sig_msg, unsigned long long sig_msg_len, const unsigned char *pk) | |||
{ | |||
unsigned long long i, m_len; | |||
unsigned long idx=0; | |||
unsigned char wots_pk[XMSS_WOTS_KEYSIZE]; | |||
unsigned char pkhash[XMSS_N]; | |||
unsigned char root[XMSS_N]; | |||
unsigned char msg_h[XMSS_N]; | |||
unsigned char hash_key[3*XMSS_N]; | |||
unsigned char pub_seed[XMSS_N]; | |||
memcpy(pub_seed, pk+XMSS_N, XMSS_N); | |||
// Init addresses | |||
uint32_t ots_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; | |||
uint32_t ltree_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; | |||
uint32_t node_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; | |||
setType(ots_addr, 0); | |||
setType(ltree_addr, 1); | |||
setType(node_addr, 2); | |||
// Extract index | |||
idx = ((unsigned long)sig_msg[0] << 24) | ((unsigned long)sig_msg[1] << 16) | ((unsigned long)sig_msg[2] << 8) | sig_msg[3]; | |||
printf("verify:: idx = %lu\n", idx); | |||
// Generate hash key (R || root || idx) | |||
memcpy(hash_key, sig_msg+4,XMSS_N); | |||
memcpy(hash_key+XMSS_N, pk, XMSS_N); | |||
to_byte(hash_key+2*XMSS_N, idx, XMSS_N); | |||
sig_msg += (XMSS_N+4); | |||
sig_msg_len -= (XMSS_N+4); | |||
// hash message | |||
unsigned long long tmp_sig_len = XMSS_WOTS_KEYSIZE+XMSS_TREEHEIGHT*XMSS_N; | |||
m_len = sig_msg_len - tmp_sig_len; | |||
h_msg(msg_h, sig_msg + tmp_sig_len, m_len, hash_key, 3*XMSS_N, XMSS_N); | |||
//----------------------- | |||
// Verify signature | |||
//----------------------- | |||
// Prepare Address | |||
setOTSADRS(ots_addr, idx); | |||
// Check WOTS signature | |||
wots_pkFromSig(wots_pk, sig_msg, msg_h, pub_seed, ots_addr); | |||
sig_msg += XMSS_WOTS_KEYSIZE; | |||
sig_msg_len -= XMSS_WOTS_KEYSIZE; | |||
// Compute Ltree | |||
setLtreeADRS(ltree_addr, idx); | |||
l_tree(pkhash, wots_pk, pub_seed, ltree_addr); | |||
// Compute root | |||
validate_authpath(root, pkhash, idx, sig_msg, pub_seed, node_addr); | |||
sig_msg += XMSS_TREEHEIGHT*XMSS_N; | |||
sig_msg_len -= XMSS_TREEHEIGHT*XMSS_N; | |||
for (i=0; i < XMSS_N; i++) | |||
if (root[i] != pk[i]) | |||
goto fail; | |||
*msglen = sig_msg_len; | |||
for (i=0; i < *msglen; i++) | |||
msg[i] = sig_msg[i]; | |||
return 0; | |||
fail: | |||
*msglen = sig_msg_len; | |||
for (i=0; i < *msglen; i++) | |||
msg[i] = 0; | |||
*msglen = -1; | |||
return -1; | |||
} | |||
/* | |||
* Generates a XMSSMT key pair for a given parameter set. | |||
* Format sk: [(ceil(h/8) bit) idx || SK_SEED || SK_PRF || PUB_SEED] | |||
@@ -617,138 +414,3 @@ int xmssmt_sign(unsigned char *sk, unsigned char *sig_msg, unsigned long long *s | |||
return 0; | |||
} | |||
/** | |||
* Verifies a given message signature pair under a given public key. | |||
*/ | |||
int xmssmt_sign_open(unsigned char *msg, unsigned long long *msglen, const unsigned char *sig_msg, unsigned long long sig_msg_len, const unsigned char *pk) | |||
{ | |||
uint64_t idx_tree; | |||
uint32_t idx_leaf; | |||
unsigned long long i, m_len; | |||
unsigned long long idx=0; | |||
unsigned char wots_pk[XMSS_WOTS_KEYSIZE]; | |||
unsigned char pkhash[XMSS_N]; | |||
unsigned char root[XMSS_N]; | |||
unsigned char msg_h[XMSS_N]; | |||
unsigned char hash_key[3*XMSS_N]; | |||
unsigned char pub_seed[XMSS_N]; | |||
memcpy(pub_seed, pk+XMSS_N, XMSS_N); | |||
// Init addresses | |||
uint32_t ots_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; | |||
uint32_t ltree_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; | |||
uint32_t node_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; | |||
// Extract index | |||
for (i = 0; i < XMSS_INDEX_LEN; i++) { | |||
idx |= ((unsigned long long)sig_msg[i]) << (8*(XMSS_INDEX_LEN - 1 - i)); | |||
} | |||
printf("verify:: idx = %llu\n", idx); | |||
sig_msg += XMSS_INDEX_LEN; | |||
sig_msg_len -= XMSS_INDEX_LEN; | |||
// Generate hash key (R || root || idx) | |||
memcpy(hash_key, sig_msg,XMSS_N); | |||
memcpy(hash_key+XMSS_N, pk, XMSS_N); | |||
to_byte(hash_key+2*XMSS_N, idx, XMSS_N); | |||
sig_msg += XMSS_N; | |||
sig_msg_len -= XMSS_N; | |||
// hash message | |||
unsigned long long tmp_sig_len = (XMSS_D * XMSS_WOTS_KEYSIZE) + (XMSS_FULLHEIGHT * XMSS_N); | |||
m_len = sig_msg_len - tmp_sig_len; | |||
h_msg(msg_h, sig_msg + tmp_sig_len, m_len, hash_key, 3*XMSS_N, XMSS_N); | |||
//----------------------- | |||
// Verify signature | |||
//----------------------- | |||
// Prepare Address | |||
idx_tree = idx >> XMSS_TREEHEIGHT; | |||
idx_leaf = (idx & ((1 << XMSS_TREEHEIGHT)-1)); | |||
setLayerADRS(ots_addr, 0); | |||
setTreeADRS(ots_addr, idx_tree); | |||
setType(ots_addr, 0); | |||
memcpy(ltree_addr, ots_addr, 12); | |||
setType(ltree_addr, 1); | |||
memcpy(node_addr, ltree_addr, 12); | |||
setType(node_addr, 2); | |||
setOTSADRS(ots_addr, idx_leaf); | |||
// Check WOTS signature | |||
wots_pkFromSig(wots_pk, sig_msg, msg_h, pub_seed, ots_addr); | |||
sig_msg += XMSS_WOTS_KEYSIZE; | |||
sig_msg_len -= XMSS_WOTS_KEYSIZE; | |||
// Compute Ltree | |||
setLtreeADRS(ltree_addr, idx_leaf); | |||
l_tree(pkhash, wots_pk, pub_seed, ltree_addr); | |||
// Compute root | |||
validate_authpath(root, pkhash, idx_leaf, sig_msg, pub_seed, node_addr); | |||
sig_msg += XMSS_TREEHEIGHT*XMSS_N; | |||
sig_msg_len -= XMSS_TREEHEIGHT*XMSS_N; | |||
for (i = 1; i < XMSS_D; i++) { | |||
// Prepare Address | |||
idx_leaf = (idx_tree & ((1 << XMSS_TREEHEIGHT)-1)); | |||
idx_tree = idx_tree >> XMSS_TREEHEIGHT; | |||
setLayerADRS(ots_addr, i); | |||
setTreeADRS(ots_addr, idx_tree); | |||
setType(ots_addr, 0); | |||
memcpy(ltree_addr, ots_addr, 12); | |||
setType(ltree_addr, 1); | |||
memcpy(node_addr, ltree_addr, 12); | |||
setType(node_addr, 2); | |||
setOTSADRS(ots_addr, idx_leaf); | |||
// Check WOTS signature | |||
wots_pkFromSig(wots_pk, sig_msg, root, pub_seed, ots_addr); | |||
sig_msg += XMSS_WOTS_KEYSIZE; | |||
sig_msg_len -= XMSS_WOTS_KEYSIZE; | |||
// Compute Ltree | |||
setLtreeADRS(ltree_addr, idx_leaf); | |||
l_tree(pkhash, wots_pk, pub_seed, ltree_addr); | |||
// Compute root | |||
validate_authpath(root, pkhash, idx_leaf, sig_msg, pub_seed, node_addr); | |||
sig_msg += XMSS_TREEHEIGHT*XMSS_N; | |||
sig_msg_len -= XMSS_TREEHEIGHT*XMSS_N; | |||
} | |||
for (i=0; i < XMSS_N; i++) | |||
if (root[i] != pk[i]) | |||
goto fail; | |||
*msglen = sig_msg_len; | |||
for (i=0; i < *msglen; i++) | |||
msg[i] = sig_msg[i]; | |||
return 0; | |||
fail: | |||
*msglen = sig_msg_len; | |||
for (i=0; i < *msglen; i++) | |||
msg[i] = 0; | |||
*msglen = -1; | |||
return -1; | |||
} |
@@ -6,10 +6,17 @@ Public domain. | |||
*/ | |||
#include "xmss_commons.h" | |||
#include <stdlib.h> | |||
#include <string.h> | |||
#include <stdio.h> | |||
#include <stdint.h> | |||
#include "wots.h" | |||
#include "hash.h" | |||
#include "hash_address.h" | |||
#include "params.h" | |||
void to_byte(unsigned char *out, unsigned long long in, uint32_t bytes) | |||
{ | |||
int32_t i; | |||
@@ -19,9 +26,340 @@ void to_byte(unsigned char *out, unsigned long long in, uint32_t bytes) | |||
} | |||
} | |||
void hexdump(const unsigned char *a, size_t len) | |||
/** | |||
* Computes the leaf at a given address. First generates the WOTS key pair, then computes leaf using l_tree. As this happens position independent, we only require that addr encodes the right ltree-address. | |||
*/ | |||
void gen_leaf_wots(unsigned char *leaf, const unsigned char *sk_seed, const unsigned char *pub_seed, uint32_t ltree_addr[8], uint32_t ots_addr[8]) | |||
{ | |||
unsigned char seed[XMSS_N]; | |||
unsigned char pk[XMSS_WOTS_KEYSIZE]; | |||
get_seed(seed, sk_seed, ots_addr); | |||
wots_pkgen(pk, seed, pub_seed, ots_addr); | |||
l_tree(leaf, pk, pub_seed, ltree_addr); | |||
} | |||
/** | |||
* Used for pseudorandom keygeneration, | |||
* generates the seed for the WOTS keypair at address addr | |||
* | |||
* takes XMSS_N byte sk_seed and returns XMSS_N byte seed using 32 byte address addr. | |||
*/ | |||
void get_seed(unsigned char *seed, const unsigned char *sk_seed, uint32_t addr[8]) | |||
{ | |||
unsigned char bytes[32]; | |||
// Make sure that chain addr, hash addr, and key bit are 0! | |||
setChainADRS(addr, 0); | |||
setHashADRS(addr, 0); | |||
setKeyAndMask(addr, 0); | |||
// Generate pseudorandom value | |||
addr_to_byte(bytes, addr); | |||
prf(seed, bytes, sk_seed, XMSS_N); | |||
} | |||
/** | |||
* Computes a leaf from a WOTS public key using an L-tree. | |||
*/ | |||
void l_tree(unsigned char *leaf, unsigned char *wots_pk, const unsigned char *pub_seed, uint32_t addr[8]) | |||
{ | |||
unsigned int l = XMSS_WOTS_LEN; | |||
uint32_t i = 0; | |||
uint32_t height = 0; | |||
uint32_t bound; | |||
//ADRS.setTreeHeight(0); | |||
setTreeHeight(addr, height); | |||
while (l > 1) { | |||
bound = l >> 1; //floor(l / 2); | |||
for (i = 0; i < bound; i++) { | |||
//ADRS.setTreeIndex(i); | |||
setTreeIndex(addr, i); | |||
//wots_pk[i] = RAND_HASH(pk[2i], pk[2i + 1], SEED, ADRS); | |||
hash_h(wots_pk+i*XMSS_N, wots_pk+i*2*XMSS_N, pub_seed, addr, XMSS_N); | |||
} | |||
//if ( l % 2 == 1 ) { | |||
if (l & 1) { | |||
//pk[floor(l / 2) + 1] = pk[l]; | |||
memcpy(wots_pk+(l>>1)*XMSS_N, wots_pk+(l-1)*XMSS_N, XMSS_N); | |||
//l = ceil(l / 2); | |||
l=(l>>1)+1; | |||
} | |||
else { | |||
//l = ceil(l / 2); | |||
l=(l>>1); | |||
} | |||
//ADRS.setTreeHeight(ADRS.getTreeHeight() + 1); | |||
height++; | |||
setTreeHeight(addr, height); | |||
} | |||
//return pk[0]; | |||
memcpy(leaf, wots_pk, XMSS_N); | |||
} | |||
/** | |||
* Computes a root node given a leaf and an authapth | |||
*/ | |||
static void validate_authpath(unsigned char *root, const unsigned char *leaf, unsigned long leafidx, const unsigned char *authpath, const unsigned char *pub_seed, uint32_t addr[8]) | |||
{ | |||
uint32_t i, j; | |||
unsigned char buffer[2*XMSS_N]; | |||
// If leafidx is odd (last bit = 1), current path element is a right child and authpath has to go to the left. | |||
// Otherwise, it is the other way around | |||
if (leafidx & 1) { | |||
for (j = 0; j < XMSS_N; j++) | |||
buffer[XMSS_N+j] = leaf[j]; | |||
for (j = 0; j < XMSS_N; j++) | |||
buffer[j] = authpath[j]; | |||
} | |||
else { | |||
for (j = 0; j < XMSS_N; j++) | |||
buffer[j] = leaf[j]; | |||
for (j = 0; j < XMSS_N; j++) | |||
buffer[XMSS_N+j] = authpath[j]; | |||
} | |||
authpath += XMSS_N; | |||
for (i=0; i < XMSS_TREEHEIGHT-1; i++) { | |||
setTreeHeight(addr, i); | |||
leafidx >>= 1; | |||
setTreeIndex(addr, leafidx); | |||
if (leafidx&1) { | |||
hash_h(buffer+XMSS_N, buffer, pub_seed, addr, XMSS_N); | |||
for (j = 0; j < XMSS_N; j++) | |||
buffer[j] = authpath[j]; | |||
} | |||
else { | |||
hash_h(buffer, buffer, pub_seed, addr, XMSS_N); | |||
for (j = 0; j < XMSS_N; j++) | |||
buffer[j+XMSS_N] = authpath[j]; | |||
} | |||
authpath += XMSS_N; | |||
} | |||
setTreeHeight(addr, (XMSS_TREEHEIGHT-1)); | |||
leafidx >>= 1; | |||
setTreeIndex(addr, leafidx); | |||
hash_h(root, buffer, pub_seed, addr, XMSS_N); | |||
} | |||
/** | |||
* Verifies a given message signature pair under a given public key. | |||
*/ | |||
int xmss_sign_open(unsigned char *msg, unsigned long long *msglen, const unsigned char *sig_msg, unsigned long long sig_msg_len, const unsigned char *pk) | |||
{ | |||
size_t i; | |||
for (i = 0; i < len; i++) | |||
printf("%02x", a[i]); | |||
} | |||
unsigned long long i, m_len; | |||
unsigned long idx=0; | |||
unsigned char wots_pk[XMSS_WOTS_KEYSIZE]; | |||
unsigned char pkhash[XMSS_N]; | |||
unsigned char root[XMSS_N]; | |||
unsigned char msg_h[XMSS_N]; | |||
unsigned char hash_key[3*XMSS_N]; | |||
unsigned char pub_seed[XMSS_N]; | |||
memcpy(pub_seed, pk+XMSS_N, XMSS_N); | |||
// Init addresses | |||
uint32_t ots_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; | |||
uint32_t ltree_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; | |||
uint32_t node_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; | |||
setType(ots_addr, 0); | |||
setType(ltree_addr, 1); | |||
setType(node_addr, 2); | |||
// Extract index | |||
idx = ((unsigned long)sig_msg[0] << 24) | ((unsigned long)sig_msg[1] << 16) | ((unsigned long)sig_msg[2] << 8) | sig_msg[3]; | |||
printf("verify:: idx = %lu\n", idx); | |||
// Generate hash key (R || root || idx) | |||
memcpy(hash_key, sig_msg+4,XMSS_N); | |||
memcpy(hash_key+XMSS_N, pk, XMSS_N); | |||
to_byte(hash_key+2*XMSS_N, idx, XMSS_N); | |||
sig_msg += (XMSS_N+4); | |||
sig_msg_len -= (XMSS_N+4); | |||
// hash message | |||
unsigned long long tmp_sig_len = XMSS_WOTS_KEYSIZE+XMSS_TREEHEIGHT*XMSS_N; | |||
m_len = sig_msg_len - tmp_sig_len; | |||
h_msg(msg_h, sig_msg + tmp_sig_len, m_len, hash_key, 3*XMSS_N, XMSS_N); | |||
//----------------------- | |||
// Verify signature | |||
//----------------------- | |||
// Prepare Address | |||
setOTSADRS(ots_addr, idx); | |||
// Check WOTS signature | |||
wots_pkFromSig(wots_pk, sig_msg, msg_h, pub_seed, ots_addr); | |||
sig_msg += XMSS_WOTS_KEYSIZE; | |||
sig_msg_len -= XMSS_WOTS_KEYSIZE; | |||
// Compute Ltree | |||
setLtreeADRS(ltree_addr, idx); | |||
l_tree(pkhash, wots_pk, pub_seed, ltree_addr); | |||
// Compute root | |||
validate_authpath(root, pkhash, idx, sig_msg, pub_seed, node_addr); | |||
sig_msg += XMSS_TREEHEIGHT*XMSS_N; | |||
sig_msg_len -= XMSS_TREEHEIGHT*XMSS_N; | |||
for (i=0; i < XMSS_N; i++) | |||
if (root[i] != pk[i]) | |||
goto fail; | |||
*msglen = sig_msg_len; | |||
for (i=0; i < *msglen; i++) | |||
msg[i] = sig_msg[i]; | |||
return 0; | |||
fail: | |||
*msglen = sig_msg_len; | |||
for (i=0; i < *msglen; i++) | |||
msg[i] = 0; | |||
*msglen = -1; | |||
return -1; | |||
} | |||
/** | |||
* Verifies a given message signature pair under a given public key. | |||
*/ | |||
int xmssmt_sign_open(unsigned char *msg, unsigned long long *msglen, const unsigned char *sig_msg, unsigned long long sig_msg_len, const unsigned char *pk) | |||
{ | |||
uint64_t idx_tree; | |||
uint32_t idx_leaf; | |||
unsigned long long i, m_len; | |||
unsigned long long idx=0; | |||
unsigned char wots_pk[XMSS_WOTS_KEYSIZE]; | |||
unsigned char pkhash[XMSS_N]; | |||
unsigned char root[XMSS_N]; | |||
unsigned char msg_h[XMSS_N]; | |||
unsigned char hash_key[3*XMSS_N]; | |||
unsigned char pub_seed[XMSS_N]; | |||
memcpy(pub_seed, pk+XMSS_N, XMSS_N); | |||
// Init addresses | |||
uint32_t ots_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; | |||
uint32_t ltree_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; | |||
uint32_t node_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; | |||
// Extract index | |||
for (i = 0; i < XMSS_INDEX_LEN; i++) { | |||
idx |= ((unsigned long long)sig_msg[i]) << (8*(XMSS_INDEX_LEN - 1 - i)); | |||
} | |||
printf("verify:: idx = %llu\n", idx); | |||
sig_msg += XMSS_INDEX_LEN; | |||
sig_msg_len -= XMSS_INDEX_LEN; | |||
// Generate hash key (R || root || idx) | |||
memcpy(hash_key, sig_msg,XMSS_N); | |||
memcpy(hash_key+XMSS_N, pk, XMSS_N); | |||
to_byte(hash_key+2*XMSS_N, idx, XMSS_N); | |||
sig_msg += XMSS_N; | |||
sig_msg_len -= XMSS_N; | |||
// hash message | |||
unsigned long long tmp_sig_len = (XMSS_D * XMSS_WOTS_KEYSIZE) + (XMSS_FULLHEIGHT * XMSS_N); | |||
m_len = sig_msg_len - tmp_sig_len; | |||
h_msg(msg_h, sig_msg + tmp_sig_len, m_len, hash_key, 3*XMSS_N, XMSS_N); | |||
//----------------------- | |||
// Verify signature | |||
//----------------------- | |||
// Prepare Address | |||
idx_tree = idx >> XMSS_TREEHEIGHT; | |||
idx_leaf = (idx & ((1 << XMSS_TREEHEIGHT)-1)); | |||
setLayerADRS(ots_addr, 0); | |||
setTreeADRS(ots_addr, idx_tree); | |||
setType(ots_addr, 0); | |||
memcpy(ltree_addr, ots_addr, 12); | |||
setType(ltree_addr, 1); | |||
memcpy(node_addr, ltree_addr, 12); | |||
setType(node_addr, 2); | |||
setOTSADRS(ots_addr, idx_leaf); | |||
// Check WOTS signature | |||
wots_pkFromSig(wots_pk, sig_msg, msg_h, pub_seed, ots_addr); | |||
sig_msg += XMSS_WOTS_KEYSIZE; | |||
sig_msg_len -= XMSS_WOTS_KEYSIZE; | |||
// Compute Ltree | |||
setLtreeADRS(ltree_addr, idx_leaf); | |||
l_tree(pkhash, wots_pk, pub_seed, ltree_addr); | |||
// Compute root | |||
validate_authpath(root, pkhash, idx_leaf, sig_msg, pub_seed, node_addr); | |||
sig_msg += XMSS_TREEHEIGHT*XMSS_N; | |||
sig_msg_len -= XMSS_TREEHEIGHT*XMSS_N; | |||
for (i = 1; i < XMSS_D; i++) { | |||
// Prepare Address | |||
idx_leaf = (idx_tree & ((1 << XMSS_TREEHEIGHT)-1)); | |||
idx_tree = idx_tree >> XMSS_TREEHEIGHT; | |||
setLayerADRS(ots_addr, i); | |||
setTreeADRS(ots_addr, idx_tree); | |||
setType(ots_addr, 0); | |||
memcpy(ltree_addr, ots_addr, 12); | |||
setType(ltree_addr, 1); | |||
memcpy(node_addr, ltree_addr, 12); | |||
setType(node_addr, 2); | |||
setOTSADRS(ots_addr, idx_leaf); | |||
// Check WOTS signature | |||
wots_pkFromSig(wots_pk, sig_msg, root, pub_seed, ots_addr); | |||
sig_msg += XMSS_WOTS_KEYSIZE; | |||
sig_msg_len -= XMSS_WOTS_KEYSIZE; | |||
// Compute Ltree | |||
setLtreeADRS(ltree_addr, idx_leaf); | |||
l_tree(pkhash, wots_pk, pub_seed, ltree_addr); | |||
// Compute root | |||
validate_authpath(root, pkhash, idx_leaf, sig_msg, pub_seed, node_addr); | |||
sig_msg += XMSS_TREEHEIGHT*XMSS_N; | |||
sig_msg_len -= XMSS_TREEHEIGHT*XMSS_N; | |||
} | |||
for (i=0; i < XMSS_N; i++) | |||
if (root[i] != pk[i]) | |||
goto fail; | |||
*msglen = sig_msg_len; | |||
for (i=0; i < *msglen; i++) | |||
msg[i] = sig_msg[i]; | |||
return 0; | |||
fail: | |||
*msglen = sig_msg_len; | |||
for (i=0; i < *msglen; i++) | |||
msg[i] = 0; | |||
*msglen = -1; | |||
return -1; | |||
} |
@@ -12,4 +12,9 @@ Public domain. | |||
void to_byte(unsigned char *output, unsigned long long in, uint32_t bytes); | |||
void hexdump(const unsigned char *a, size_t len); | |||
#endif | |||
void gen_leaf_wots(unsigned char *leaf, const unsigned char *sk_seed, const unsigned char *pub_seed, uint32_t ltree_addr[8], uint32_t ots_addr[8]); | |||
void get_seed(unsigned char *seed, const unsigned char *sk_seed, uint32_t addr[8]); | |||
void l_tree(unsigned char *leaf, unsigned char *wots_pk, const unsigned char *pub_seed, uint32_t addr[8]); | |||
int xmss_sign_open(unsigned char *msg, unsigned long long *msglen, const unsigned char *sig_msg, unsigned long long sig_msg_len, const unsigned char *pk); | |||
int xmssmt_sign_open(unsigned char *msg, unsigned long long *msglen, const unsigned char *sig_msg, unsigned long long sig_msg_len, const unsigned char *pk); | |||
#endif |
@@ -19,24 +19,6 @@ Public domain. | |||
#include "hash_address.h" | |||
#include "params.h" | |||
/** | |||
* Used for pseudorandom keygeneration, | |||
* generates the seed for the WOTS keypair at address addr | |||
* | |||
* takes n byte sk_seed and returns n byte seed using 32 byte address addr. | |||
*/ | |||
static void get_seed(unsigned char *seed, const unsigned char *sk_seed, int n, uint32_t addr[8]) | |||
{ | |||
unsigned char bytes[32]; | |||
// Make sure that chain addr, hash addr, and key bit are 0! | |||
setChainADRS(addr,0); | |||
setHashADRS(addr,0); | |||
setKeyAndMask(addr,0); | |||
// Generate pseudorandom value | |||
addr_to_byte(bytes, addr); | |||
prf(seed, bytes, sk_seed, n); | |||
} | |||
/** | |||
* Initialize BDS state struct | |||
* parameter names are the same as used in the description of the BDS traversal | |||
@@ -53,61 +35,6 @@ void xmss_set_bds_state(bds_state *state, unsigned char *stack, int stackoffset, | |||
state->next_leaf = next_leaf; | |||
} | |||
/** | |||
* Computes a leaf from a WOTS public key using an L-tree. | |||
*/ | |||
static void l_tree(unsigned char *leaf, unsigned char *wots_pk, const unsigned char *pub_seed, uint32_t addr[8]) | |||
{ | |||
unsigned int l = XMSS_WOTS_LEN; | |||
unsigned int n = XMSS_N; | |||
uint32_t i = 0; | |||
uint32_t height = 0; | |||
uint32_t bound; | |||
//ADRS.setTreeHeight(0); | |||
setTreeHeight(addr, height); | |||
while (l > 1) { | |||
bound = l >> 1; //floor(l / 2); | |||
for (i = 0; i < bound; i++) { | |||
//ADRS.setTreeIndex(i); | |||
setTreeIndex(addr, i); | |||
//wots_pk[i] = RAND_HASH(pk[2i], pk[2i + 1], SEED, ADRS); | |||
hash_h(wots_pk+i*n, wots_pk+i*2*n, pub_seed, addr, n); | |||
} | |||
//if ( l % 2 == 1 ) { | |||
if (l & 1) { | |||
//pk[floor(l / 2) + 1] = pk[l]; | |||
memcpy(wots_pk+(l>>1)*n, wots_pk+(l-1)*n, n); | |||
//l = ceil(l / 2); | |||
l=(l>>1)+1; | |||
} | |||
else { | |||
//l = ceil(l / 2); | |||
l=(l>>1); | |||
} | |||
//ADRS.setTreeHeight(ADRS.getTreeHeight() + 1); | |||
height++; | |||
setTreeHeight(addr, height); | |||
} | |||
//return pk[0]; | |||
memcpy(leaf, wots_pk, n); | |||
} | |||
/** | |||
* Computes the leaf at a given address. First generates the WOTS key pair, then computes leaf using l_tree. As this happens position independent, we only require that addr encodes the right ltree-address. | |||
*/ | |||
static void gen_leaf_wots(unsigned char *leaf, const unsigned char *sk_seed, const unsigned char *pub_seed, uint32_t ltree_addr[8], uint32_t ots_addr[8]) | |||
{ | |||
unsigned char seed[XMSS_N]; | |||
unsigned char pk[XMSS_WOTS_KEYSIZE]; | |||
get_seed(seed, sk_seed, XMSS_N, ots_addr); | |||
wots_pkgen(pk, seed, pub_seed, ots_addr); | |||
l_tree(leaf, pk, pub_seed, ltree_addr); | |||
} | |||
static int treehash_minheight_on_stack(bds_state* state, const treehash_inst *treehash) { | |||
unsigned int r = XMSS_TREEHEIGHT, i; | |||
for (i = 0; i < treehash->stackusage; i++) { | |||
@@ -233,52 +160,6 @@ static void treehash_update(treehash_inst *treehash, bds_state *state, const uns | |||
} | |||
} | |||
/** | |||
* Computes a root node given a leaf and an authapth | |||
*/ | |||
static void validate_authpath(unsigned char *root, const unsigned char *leaf, unsigned long leafidx, const unsigned char *authpath, const unsigned char *pub_seed, uint32_t addr[8]) | |||
{ | |||
uint32_t i, j; | |||
unsigned char buffer[2*XMSS_N]; | |||
// If leafidx is odd (last bit = 1), current path element is a right child and authpath has to go to the left. | |||
// Otherwise, it is the other way around | |||
if (leafidx & 1) { | |||
for (j = 0; j < XMSS_N; j++) | |||
buffer[XMSS_N+j] = leaf[j]; | |||
for (j = 0; j < XMSS_N; j++) | |||
buffer[j] = authpath[j]; | |||
} | |||
else { | |||
for (j = 0; j < XMSS_N; j++) | |||
buffer[j] = leaf[j]; | |||
for (j = 0; j < XMSS_N; j++) | |||
buffer[XMSS_N+j] = authpath[j]; | |||
} | |||
authpath += XMSS_N; | |||
for (i=0; i < XMSS_TREEHEIGHT-1; i++) { | |||
setTreeHeight(addr, i); | |||
leafidx >>= 1; | |||
setTreeIndex(addr, leafidx); | |||
if (leafidx&1) { | |||
hash_h(buffer+XMSS_N, buffer, pub_seed, addr, XMSS_N); | |||
for (j = 0; j < XMSS_N; j++) | |||
buffer[j] = authpath[j]; | |||
} | |||
else { | |||
hash_h(buffer, buffer, pub_seed, addr, XMSS_N); | |||
for (j = 0; j < XMSS_N; j++) | |||
buffer[j+XMSS_N] = authpath[j]; | |||
} | |||
authpath += XMSS_N; | |||
} | |||
setTreeHeight(addr, (XMSS_TREEHEIGHT-1)); | |||
leafidx >>= 1; | |||
setTreeIndex(addr, leafidx); | |||
hash_h(root, buffer, pub_seed, addr, XMSS_N); | |||
} | |||
/** | |||
* Performs one treehash update on the instance that needs it the most. | |||
* Returns 1 if such an instance was not found | |||
@@ -553,7 +434,7 @@ int xmss_sign(unsigned char *sk, bds_state *state, unsigned char *sig_msg, unsig | |||
setOTSADRS(ots_addr, idx); | |||
// Compute seed for OTS key pair | |||
get_seed(ots_seed, sk_seed, XMSS_N, ots_addr); | |||
get_seed(ots_seed, sk_seed, ots_addr); | |||
// Compute WOTS signature | |||
wots_sign(sig_msg, msg_h, ots_seed, pub_seed, ots_addr); | |||
@@ -578,88 +459,6 @@ int xmss_sign(unsigned char *sk, bds_state *state, unsigned char *sig_msg, unsig | |||
return 0; | |||
} | |||
/** | |||
* Verifies a given message signature pair under a given public key. | |||
*/ | |||
int xmss_sign_open(unsigned char *msg, unsigned long long *msglen, const unsigned char *sig_msg, unsigned long long sig_msg_len, const unsigned char *pk) | |||
{ | |||
unsigned long long i, m_len; | |||
unsigned long idx=0; | |||
unsigned char wots_pk[XMSS_WOTS_KEYSIZE]; | |||
unsigned char pkhash[XMSS_N]; | |||
unsigned char root[XMSS_N]; | |||
unsigned char msg_h[XMSS_N]; | |||
unsigned char hash_key[3*XMSS_N]; | |||
unsigned char pub_seed[XMSS_N]; | |||
memcpy(pub_seed, pk+XMSS_N, XMSS_N); | |||
// Init addresses | |||
uint32_t ots_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; | |||
uint32_t ltree_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; | |||
uint32_t node_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; | |||
setType(ots_addr, 0); | |||
setType(ltree_addr, 1); | |||
setType(node_addr, 2); | |||
// Extract index | |||
idx = ((unsigned long)sig_msg[0] << 24) | ((unsigned long)sig_msg[1] << 16) | ((unsigned long)sig_msg[2] << 8) | sig_msg[3]; | |||
// Generate hash key (R || root || idx) | |||
memcpy(hash_key, sig_msg+4,XMSS_N); | |||
memcpy(hash_key+XMSS_N, pk, XMSS_N); | |||
to_byte(hash_key+2*XMSS_N, idx, XMSS_N); | |||
sig_msg += (XMSS_N+4); | |||
sig_msg_len -= (XMSS_N+4); | |||
// hash message | |||
unsigned long long tmp_sig_len = XMSS_WOTS_KEYSIZE+XMSS_TREEHEIGHT*XMSS_N; | |||
m_len = sig_msg_len - tmp_sig_len; | |||
h_msg(msg_h, sig_msg + tmp_sig_len, m_len, hash_key, 3*XMSS_N, XMSS_N); | |||
//----------------------- | |||
// Verify signature | |||
//----------------------- | |||
// Prepare Address | |||
setOTSADRS(ots_addr, idx); | |||
// Check WOTS signature | |||
wots_pkFromSig(wots_pk, sig_msg, msg_h, pub_seed, ots_addr); | |||
sig_msg += XMSS_WOTS_KEYSIZE; | |||
sig_msg_len -= XMSS_WOTS_KEYSIZE; | |||
// Compute Ltree | |||
setLtreeADRS(ltree_addr, idx); | |||
l_tree(pkhash, wots_pk, pub_seed, ltree_addr); | |||
// Compute root | |||
validate_authpath(root, pkhash, idx, sig_msg, pub_seed, node_addr); | |||
sig_msg += XMSS_TREEHEIGHT*XMSS_N; | |||
sig_msg_len -= XMSS_TREEHEIGHT*XMSS_N; | |||
for (i = 0; i < XMSS_N; i++) | |||
if (root[i] != pk[i]) | |||
goto fail; | |||
*msglen = sig_msg_len; | |||
for (i = 0; i < *msglen; i++) | |||
msg[i] = sig_msg[i]; | |||
return 0; | |||
fail: | |||
*msglen = sig_msg_len; | |||
for (i = 0; i < *msglen; i++) | |||
msg[i] = 0; | |||
*msglen = -1; | |||
return -1; | |||
} | |||
/* | |||
* Generates a XMSSMT key pair for a given parameter set. | |||
* Format sk: [(ceil(h/8) bit) idx || SK_SEED || SK_PRF || PUB_SEED || root] | |||
@@ -686,7 +485,7 @@ int xmssmt_keypair(unsigned char *pk, unsigned char *sk, bds_state *states, unsi | |||
// Compute seed for OTS key pair | |||
treehash_setup(pk, XMSS_TREEHEIGHT, 0, states + i, sk+XMSS_INDEX_LEN, pk+XMSS_N, addr); | |||
setLayerADRS(addr, (i+1)); | |||
get_seed(ots_seed, sk+XMSS_INDEX_LEN, XMSS_N, addr); | |||
get_seed(ots_seed, sk+XMSS_INDEX_LEN, addr); | |||
wots_sign(wots_sigs + i*XMSS_WOTS_KEYSIZE, pk, ots_seed, pk+XMSS_N, addr); | |||
} | |||
// Address now points to the single tree on layer d-1 | |||
@@ -790,7 +589,7 @@ int xmssmt_sign(unsigned char *sk, bds_state *states, unsigned char *wots_sigs, | |||
setOTSADRS(ots_addr, idx_leaf); | |||
// Compute seed for OTS key pair | |||
get_seed(ots_seed, sk_seed, XMSS_N, ots_addr); | |||
get_seed(ots_seed, sk_seed, ots_addr); | |||
// Compute WOTS signature | |||
wots_sign(sig_msg, msg_h, ots_seed, pub_seed, ots_addr); | |||
@@ -853,7 +652,7 @@ int xmssmt_sign(unsigned char *sk, bds_state *states, unsigned char *wots_sigs, | |||
setTreeADRS(ots_addr, ((idx + 1) >> ((i+2) * XMSS_TREEHEIGHT))); | |||
setOTSADRS(ots_addr, (((idx >> ((i+1) * XMSS_TREEHEIGHT)) + 1) & ((1 << XMSS_TREEHEIGHT)-1))); | |||
get_seed(ots_seed, sk+XMSS_INDEX_LEN, XMSS_N, ots_addr); | |||
get_seed(ots_seed, sk+XMSS_INDEX_LEN, ots_addr); | |||
wots_sign(wots_sigs + i*XMSS_WOTS_KEYSIZE, states[i].stack, ots_seed, pub_seed, ots_addr); | |||
states[XMSS_D + i].stackoffset = 0; | |||
@@ -872,138 +671,3 @@ int xmssmt_sign(unsigned char *sk, bds_state *states, unsigned char *wots_sigs, | |||
return 0; | |||
} | |||
/** | |||
* Verifies a given message signature pair under a given public key. | |||
*/ | |||
int xmssmt_sign_open(unsigned char *msg, unsigned long long *msglen, const unsigned char *sig_msg, unsigned long long sig_msg_len, const unsigned char *pk) | |||
{ | |||
uint64_t idx_tree; | |||
uint32_t idx_leaf; | |||
unsigned long long i, m_len; | |||
unsigned long long idx=0; | |||
unsigned char wots_pk[XMSS_WOTS_KEYSIZE]; | |||
unsigned char pkhash[XMSS_N]; | |||
unsigned char root[XMSS_N]; | |||
unsigned char msg_h[XMSS_N]; | |||
unsigned char hash_key[3*XMSS_N]; | |||
unsigned char pub_seed[XMSS_N]; | |||
memcpy(pub_seed, pk+XMSS_N, XMSS_N); | |||
// Init addresses | |||
uint32_t ots_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; | |||
uint32_t ltree_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; | |||
uint32_t node_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; | |||
// Extract index | |||
for (i = 0; i < XMSS_INDEX_LEN; i++) { | |||
idx |= ((unsigned long long)sig_msg[i]) << (8*(XMSS_INDEX_LEN - 1 - i)); | |||
} | |||
sig_msg += XMSS_INDEX_LEN; | |||
sig_msg_len -= XMSS_INDEX_LEN; | |||
// Generate hash key (R || root || idx) | |||
memcpy(hash_key, sig_msg,XMSS_N); | |||
memcpy(hash_key+XMSS_N, pk, XMSS_N); | |||
to_byte(hash_key+2*XMSS_N, idx, XMSS_N); | |||
sig_msg += XMSS_N; | |||
sig_msg_len -= XMSS_N; | |||
// hash message (recall, R is now on pole position at sig_msg | |||
unsigned long long tmp_sig_len = (XMSS_D * XMSS_WOTS_KEYSIZE) + (XMSS_FULLHEIGHT * XMSS_N); | |||
m_len = sig_msg_len - tmp_sig_len; | |||
h_msg(msg_h, sig_msg + tmp_sig_len, m_len, hash_key, 3*XMSS_N, XMSS_N); | |||
//----------------------- | |||
// Verify signature | |||
//----------------------- | |||
// Prepare Address | |||
idx_tree = idx >> XMSS_TREEHEIGHT; | |||
idx_leaf = (idx & ((1 << XMSS_TREEHEIGHT)-1)); | |||
setLayerADRS(ots_addr, 0); | |||
setTreeADRS(ots_addr, idx_tree); | |||
setType(ots_addr, 0); | |||
memcpy(ltree_addr, ots_addr, 12); | |||
setType(ltree_addr, 1); | |||
memcpy(node_addr, ltree_addr, 12); | |||
setType(node_addr, 2); | |||
setOTSADRS(ots_addr, idx_leaf); | |||
// Check WOTS signature | |||
wots_pkFromSig(wots_pk, sig_msg, msg_h, pub_seed, ots_addr); | |||
sig_msg += XMSS_WOTS_KEYSIZE; | |||
sig_msg_len -= XMSS_WOTS_KEYSIZE; | |||
// Compute Ltree | |||
setLtreeADRS(ltree_addr, idx_leaf); | |||
l_tree(pkhash, wots_pk, pub_seed, ltree_addr); | |||
// Compute root | |||
validate_authpath(root, pkhash, idx_leaf, sig_msg, pub_seed, node_addr); | |||
sig_msg += XMSS_TREEHEIGHT*XMSS_N; | |||
sig_msg_len -= XMSS_TREEHEIGHT*XMSS_N; | |||
for (i = 1; i < XMSS_D; i++) { | |||
// Prepare Address | |||
idx_leaf = (idx_tree & ((1 << XMSS_TREEHEIGHT)-1)); | |||
idx_tree = idx_tree >> XMSS_TREEHEIGHT; | |||
setLayerADRS(ots_addr, i); | |||
setTreeADRS(ots_addr, idx_tree); | |||
setType(ots_addr, 0); | |||
memcpy(ltree_addr, ots_addr, 12); | |||
setType(ltree_addr, 1); | |||
memcpy(node_addr, ltree_addr, 12); | |||
setType(node_addr, 2); | |||
setOTSADRS(ots_addr, idx_leaf); | |||
// Check WOTS signature | |||
wots_pkFromSig(wots_pk, sig_msg, root, pub_seed, ots_addr); | |||
sig_msg += XMSS_WOTS_KEYSIZE; | |||
sig_msg_len -= XMSS_WOTS_KEYSIZE; | |||
// Compute Ltree | |||
setLtreeADRS(ltree_addr, idx_leaf); | |||
l_tree(pkhash, wots_pk, pub_seed, ltree_addr); | |||
// Compute root | |||
validate_authpath(root, pkhash, idx_leaf, sig_msg, pub_seed, node_addr); | |||
sig_msg += XMSS_TREEHEIGHT*XMSS_N; | |||
sig_msg_len -= XMSS_TREEHEIGHT*XMSS_N; | |||
} | |||
for (i = 0; i < XMSS_N; i++) | |||
if (root[i] != pk[i]) | |||
goto fail; | |||
*msglen = sig_msg_len; | |||
for (i = 0; i < *msglen; i++) | |||
msg[i] = sig_msg[i]; | |||
return 0; | |||
fail: | |||
*msglen = sig_msg_len; | |||
for (i = 0; i < *msglen; i++) | |||
msg[i] = 0; | |||
*msglen = -1; | |||
return -1; | |||
} |