@@ -14,22 +14,22 @@ | |||
static uint64_t load64(const unsigned char *x) | |||
{ | |||
unsigned long long r = 0, i; | |||
unsigned long long r = 0, i; | |||
for (i = 0; i < 8; ++i) { | |||
r |= (unsigned long long)x[i] << 8 * i; | |||
} | |||
return r; | |||
for (i = 0; i < 8; ++i) { | |||
r |= (unsigned long long)x[i] << 8 * i; | |||
} | |||
return r; | |||
} | |||
static void store64(uint8_t *x, uint64_t u) | |||
{ | |||
unsigned int i; | |||
unsigned int i; | |||
for(i=0; i<8; ++i) { | |||
x[i] = u; | |||
u >>= 8; | |||
} | |||
for (i = 0; i < 8; ++i) { | |||
x[i] = u; | |||
u >>= 8; | |||
} | |||
} | |||
static const uint64_t KeccakF_RoundConstants[NROUNDS] = | |||
@@ -62,357 +62,356 @@ static const uint64_t KeccakF_RoundConstants[NROUNDS] = | |||
void KeccakF1600_StatePermute(uint64_t * state) | |||
{ | |||
int round; | |||
uint64_t Aba, Abe, Abi, Abo, Abu; | |||
uint64_t Aga, Age, Agi, Ago, Agu; | |||
uint64_t Aka, Ake, Aki, Ako, Aku; | |||
uint64_t Ama, Ame, Ami, Amo, Amu; | |||
uint64_t Asa, Ase, Asi, Aso, Asu; | |||
uint64_t BCa, BCe, BCi, BCo, BCu; | |||
uint64_t Da, De, Di, Do, Du; | |||
uint64_t Eba, Ebe, Ebi, Ebo, Ebu; | |||
uint64_t Ega, Ege, Egi, Ego, Egu; | |||
uint64_t Eka, Eke, Eki, Eko, Eku; | |||
uint64_t Ema, Eme, Emi, Emo, Emu; | |||
uint64_t Esa, Ese, Esi, Eso, Esu; | |||
//copyFromState(A, state) | |||
Aba = state[ 0]; | |||
Abe = state[ 1]; | |||
Abi = state[ 2]; | |||
Abo = state[ 3]; | |||
Abu = state[ 4]; | |||
Aga = state[ 5]; | |||
Age = state[ 6]; | |||
Agi = state[ 7]; | |||
Ago = state[ 8]; | |||
Agu = state[ 9]; | |||
Aka = state[10]; | |||
Ake = state[11]; | |||
Aki = state[12]; | |||
Ako = state[13]; | |||
Aku = state[14]; | |||
Ama = state[15]; | |||
Ame = state[16]; | |||
Ami = state[17]; | |||
Amo = state[18]; | |||
Amu = state[19]; | |||
Asa = state[20]; | |||
Ase = state[21]; | |||
Asi = state[22]; | |||
Aso = state[23]; | |||
Asu = state[24]; | |||
for( round = 0; round < NROUNDS; round += 2 ) | |||
{ | |||
// prepareTheta | |||
BCa = Aba^Aga^Aka^Ama^Asa; | |||
BCe = Abe^Age^Ake^Ame^Ase; | |||
BCi = Abi^Agi^Aki^Ami^Asi; | |||
BCo = Abo^Ago^Ako^Amo^Aso; | |||
BCu = Abu^Agu^Aku^Amu^Asu; | |||
//thetaRhoPiChiIotaPrepareTheta(round , A, E) | |||
Da = BCu^ROL(BCe, 1); | |||
De = BCa^ROL(BCi, 1); | |||
Di = BCe^ROL(BCo, 1); | |||
Do = BCi^ROL(BCu, 1); | |||
Du = BCo^ROL(BCa, 1); | |||
Aba ^= Da; | |||
BCa = Aba; | |||
Age ^= De; | |||
BCe = ROL(Age, 44); | |||
Aki ^= Di; | |||
BCi = ROL(Aki, 43); | |||
Amo ^= Do; | |||
BCo = ROL(Amo, 21); | |||
Asu ^= Du; | |||
BCu = ROL(Asu, 14); | |||
Eba = BCa ^((~BCe)& BCi ); | |||
Eba ^= (uint64_t)KeccakF_RoundConstants[round]; | |||
Ebe = BCe ^((~BCi)& BCo ); | |||
Ebi = BCi ^((~BCo)& BCu ); | |||
Ebo = BCo ^((~BCu)& BCa ); | |||
Ebu = BCu ^((~BCa)& BCe ); | |||
Abo ^= Do; | |||
BCa = ROL(Abo, 28); | |||
Agu ^= Du; | |||
BCe = ROL(Agu, 20); | |||
Aka ^= Da; | |||
BCi = ROL(Aka, 3); | |||
Ame ^= De; | |||
BCo = ROL(Ame, 45); | |||
Asi ^= Di; | |||
BCu = ROL(Asi, 61); | |||
Ega = BCa ^((~BCe)& BCi ); | |||
Ege = BCe ^((~BCi)& BCo ); | |||
Egi = BCi ^((~BCo)& BCu ); | |||
Ego = BCo ^((~BCu)& BCa ); | |||
Egu = BCu ^((~BCa)& BCe ); | |||
Abe ^= De; | |||
BCa = ROL(Abe, 1); | |||
Agi ^= Di; | |||
BCe = ROL(Agi, 6); | |||
Ako ^= Do; | |||
BCi = ROL(Ako, 25); | |||
Amu ^= Du; | |||
BCo = ROL(Amu, 8); | |||
Asa ^= Da; | |||
BCu = ROL(Asa, 18); | |||
Eka = BCa ^((~BCe)& BCi ); | |||
Eke = BCe ^((~BCi)& BCo ); | |||
Eki = BCi ^((~BCo)& BCu ); | |||
Eko = BCo ^((~BCu)& BCa ); | |||
Eku = BCu ^((~BCa)& BCe ); | |||
Abu ^= Du; | |||
BCa = ROL(Abu, 27); | |||
Aga ^= Da; | |||
BCe = ROL(Aga, 36); | |||
Ake ^= De; | |||
BCi = ROL(Ake, 10); | |||
Ami ^= Di; | |||
BCo = ROL(Ami, 15); | |||
Aso ^= Do; | |||
BCu = ROL(Aso, 56); | |||
Ema = BCa ^((~BCe)& BCi ); | |||
Eme = BCe ^((~BCi)& BCo ); | |||
Emi = BCi ^((~BCo)& BCu ); | |||
Emo = BCo ^((~BCu)& BCa ); | |||
Emu = BCu ^((~BCa)& BCe ); | |||
Abi ^= Di; | |||
BCa = ROL(Abi, 62); | |||
Ago ^= Do; | |||
BCe = ROL(Ago, 55); | |||
Aku ^= Du; | |||
BCi = ROL(Aku, 39); | |||
Ama ^= Da; | |||
BCo = ROL(Ama, 41); | |||
Ase ^= De; | |||
BCu = ROL(Ase, 2); | |||
Esa = BCa ^((~BCe)& BCi ); | |||
Ese = BCe ^((~BCi)& BCo ); | |||
Esi = BCi ^((~BCo)& BCu ); | |||
Eso = BCo ^((~BCu)& BCa ); | |||
Esu = BCu ^((~BCa)& BCe ); | |||
// prepareTheta | |||
BCa = Eba^Ega^Eka^Ema^Esa; | |||
BCe = Ebe^Ege^Eke^Eme^Ese; | |||
BCi = Ebi^Egi^Eki^Emi^Esi; | |||
BCo = Ebo^Ego^Eko^Emo^Eso; | |||
BCu = Ebu^Egu^Eku^Emu^Esu; | |||
//thetaRhoPiChiIotaPrepareTheta(round+1, E, A) | |||
Da = BCu^ROL(BCe, 1); | |||
De = BCa^ROL(BCi, 1); | |||
Di = BCe^ROL(BCo, 1); | |||
Do = BCi^ROL(BCu, 1); | |||
Du = BCo^ROL(BCa, 1); | |||
Eba ^= Da; | |||
BCa = Eba; | |||
Ege ^= De; | |||
BCe = ROL(Ege, 44); | |||
Eki ^= Di; | |||
BCi = ROL(Eki, 43); | |||
Emo ^= Do; | |||
BCo = ROL(Emo, 21); | |||
Esu ^= Du; | |||
BCu = ROL(Esu, 14); | |||
Aba = BCa ^((~BCe)& BCi ); | |||
Aba ^= (uint64_t)KeccakF_RoundConstants[round+1]; | |||
Abe = BCe ^((~BCi)& BCo ); | |||
Abi = BCi ^((~BCo)& BCu ); | |||
Abo = BCo ^((~BCu)& BCa ); | |||
Abu = BCu ^((~BCa)& BCe ); | |||
Ebo ^= Do; | |||
BCa = ROL(Ebo, 28); | |||
Egu ^= Du; | |||
BCe = ROL(Egu, 20); | |||
Eka ^= Da; | |||
BCi = ROL(Eka, 3); | |||
Eme ^= De; | |||
BCo = ROL(Eme, 45); | |||
Esi ^= Di; | |||
BCu = ROL(Esi, 61); | |||
Aga = BCa ^((~BCe)& BCi ); | |||
Age = BCe ^((~BCi)& BCo ); | |||
Agi = BCi ^((~BCo)& BCu ); | |||
Ago = BCo ^((~BCu)& BCa ); | |||
Agu = BCu ^((~BCa)& BCe ); | |||
Ebe ^= De; | |||
BCa = ROL(Ebe, 1); | |||
Egi ^= Di; | |||
BCe = ROL(Egi, 6); | |||
Eko ^= Do; | |||
BCi = ROL(Eko, 25); | |||
Emu ^= Du; | |||
BCo = ROL(Emu, 8); | |||
Esa ^= Da; | |||
BCu = ROL(Esa, 18); | |||
Aka = BCa ^((~BCe)& BCi ); | |||
Ake = BCe ^((~BCi)& BCo ); | |||
Aki = BCi ^((~BCo)& BCu ); | |||
Ako = BCo ^((~BCu)& BCa ); | |||
Aku = BCu ^((~BCa)& BCe ); | |||
Ebu ^= Du; | |||
BCa = ROL(Ebu, 27); | |||
Ega ^= Da; | |||
BCe = ROL(Ega, 36); | |||
Eke ^= De; | |||
BCi = ROL(Eke, 10); | |||
Emi ^= Di; | |||
BCo = ROL(Emi, 15); | |||
Eso ^= Do; | |||
BCu = ROL(Eso, 56); | |||
Ama = BCa ^((~BCe)& BCi ); | |||
Ame = BCe ^((~BCi)& BCo ); | |||
Ami = BCi ^((~BCo)& BCu ); | |||
Amo = BCo ^((~BCu)& BCa ); | |||
Amu = BCu ^((~BCa)& BCe ); | |||
Ebi ^= Di; | |||
BCa = ROL(Ebi, 62); | |||
Ego ^= Do; | |||
BCe = ROL(Ego, 55); | |||
Eku ^= Du; | |||
BCi = ROL(Eku, 39); | |||
Ema ^= Da; | |||
BCo = ROL(Ema, 41); | |||
Ese ^= De; | |||
BCu = ROL(Ese, 2); | |||
Asa = BCa ^((~BCe)& BCi ); | |||
Ase = BCe ^((~BCi)& BCo ); | |||
Asi = BCi ^((~BCo)& BCu ); | |||
Aso = BCo ^((~BCu)& BCa ); | |||
Asu = BCu ^((~BCa)& BCe ); | |||
} | |||
int round; | |||
uint64_t Aba, Abe, Abi, Abo, Abu; | |||
uint64_t Aga, Age, Agi, Ago, Agu; | |||
uint64_t Aka, Ake, Aki, Ako, Aku; | |||
uint64_t Ama, Ame, Ami, Amo, Amu; | |||
uint64_t Asa, Ase, Asi, Aso, Asu; | |||
uint64_t BCa, BCe, BCi, BCo, BCu; | |||
uint64_t Da, De, Di, Do, Du; | |||
uint64_t Eba, Ebe, Ebi, Ebo, Ebu; | |||
uint64_t Ega, Ege, Egi, Ego, Egu; | |||
uint64_t Eka, Eke, Eki, Eko, Eku; | |||
uint64_t Ema, Eme, Emi, Emo, Emu; | |||
uint64_t Esa, Ese, Esi, Eso, Esu; | |||
//copyFromState(A, state) | |||
Aba = state[ 0]; | |||
Abe = state[ 1]; | |||
Abi = state[ 2]; | |||
Abo = state[ 3]; | |||
Abu = state[ 4]; | |||
Aga = state[ 5]; | |||
Age = state[ 6]; | |||
Agi = state[ 7]; | |||
Ago = state[ 8]; | |||
Agu = state[ 9]; | |||
Aka = state[10]; | |||
Ake = state[11]; | |||
Aki = state[12]; | |||
Ako = state[13]; | |||
Aku = state[14]; | |||
Ama = state[15]; | |||
Ame = state[16]; | |||
Ami = state[17]; | |||
Amo = state[18]; | |||
Amu = state[19]; | |||
Asa = state[20]; | |||
Ase = state[21]; | |||
Asi = state[22]; | |||
Aso = state[23]; | |||
Asu = state[24]; | |||
for (round = 0; round < NROUNDS; round += 2) { | |||
// prepareTheta | |||
BCa = Aba^Aga^Aka^Ama^Asa; | |||
BCe = Abe^Age^Ake^Ame^Ase; | |||
BCi = Abi^Agi^Aki^Ami^Asi; | |||
BCo = Abo^Ago^Ako^Amo^Aso; | |||
BCu = Abu^Agu^Aku^Amu^Asu; | |||
//thetaRhoPiChiIotaPrepareTheta(round , A, E) | |||
Da = BCu^ROL(BCe, 1); | |||
De = BCa^ROL(BCi, 1); | |||
Di = BCe^ROL(BCo, 1); | |||
Do = BCi^ROL(BCu, 1); | |||
Du = BCo^ROL(BCa, 1); | |||
Aba ^= Da; | |||
BCa = Aba; | |||
Age ^= De; | |||
BCe = ROL(Age, 44); | |||
Aki ^= Di; | |||
BCi = ROL(Aki, 43); | |||
Amo ^= Do; | |||
BCo = ROL(Amo, 21); | |||
Asu ^= Du; | |||
BCu = ROL(Asu, 14); | |||
Eba = BCa ^((~BCe)& BCi ); | |||
Eba ^= (uint64_t)KeccakF_RoundConstants[round]; | |||
Ebe = BCe ^((~BCi)& BCo ); | |||
Ebi = BCi ^((~BCo)& BCu ); | |||
Ebo = BCo ^((~BCu)& BCa ); | |||
Ebu = BCu ^((~BCa)& BCe ); | |||
Abo ^= Do; | |||
BCa = ROL(Abo, 28); | |||
Agu ^= Du; | |||
BCe = ROL(Agu, 20); | |||
Aka ^= Da; | |||
BCi = ROL(Aka, 3); | |||
Ame ^= De; | |||
BCo = ROL(Ame, 45); | |||
Asi ^= Di; | |||
BCu = ROL(Asi, 61); | |||
Ega = BCa ^((~BCe)& BCi ); | |||
Ege = BCe ^((~BCi)& BCo ); | |||
Egi = BCi ^((~BCo)& BCu ); | |||
Ego = BCo ^((~BCu)& BCa ); | |||
Egu = BCu ^((~BCa)& BCe ); | |||
Abe ^= De; | |||
BCa = ROL(Abe, 1); | |||
Agi ^= Di; | |||
BCe = ROL(Agi, 6); | |||
Ako ^= Do; | |||
BCi = ROL(Ako, 25); | |||
Amu ^= Du; | |||
BCo = ROL(Amu, 8); | |||
Asa ^= Da; | |||
BCu = ROL(Asa, 18); | |||
Eka = BCa ^((~BCe)& BCi ); | |||
Eke = BCe ^((~BCi)& BCo ); | |||
Eki = BCi ^((~BCo)& BCu ); | |||
Eko = BCo ^((~BCu)& BCa ); | |||
Eku = BCu ^((~BCa)& BCe ); | |||
Abu ^= Du; | |||
BCa = ROL(Abu, 27); | |||
Aga ^= Da; | |||
BCe = ROL(Aga, 36); | |||
Ake ^= De; | |||
BCi = ROL(Ake, 10); | |||
Ami ^= Di; | |||
BCo = ROL(Ami, 15); | |||
Aso ^= Do; | |||
BCu = ROL(Aso, 56); | |||
Ema = BCa ^((~BCe)& BCi ); | |||
Eme = BCe ^((~BCi)& BCo ); | |||
Emi = BCi ^((~BCo)& BCu ); | |||
Emo = BCo ^((~BCu)& BCa ); | |||
Emu = BCu ^((~BCa)& BCe ); | |||
Abi ^= Di; | |||
BCa = ROL(Abi, 62); | |||
Ago ^= Do; | |||
BCe = ROL(Ago, 55); | |||
Aku ^= Du; | |||
BCi = ROL(Aku, 39); | |||
Ama ^= Da; | |||
BCo = ROL(Ama, 41); | |||
Ase ^= De; | |||
BCu = ROL(Ase, 2); | |||
Esa = BCa ^((~BCe)& BCi ); | |||
Ese = BCe ^((~BCi)& BCo ); | |||
Esi = BCi ^((~BCo)& BCu ); | |||
Eso = BCo ^((~BCu)& BCa ); | |||
Esu = BCu ^((~BCa)& BCe ); | |||
// prepareTheta | |||
BCa = Eba^Ega^Eka^Ema^Esa; | |||
BCe = Ebe^Ege^Eke^Eme^Ese; | |||
BCi = Ebi^Egi^Eki^Emi^Esi; | |||
BCo = Ebo^Ego^Eko^Emo^Eso; | |||
BCu = Ebu^Egu^Eku^Emu^Esu; | |||
//thetaRhoPiChiIotaPrepareTheta(round+1, E, A) | |||
Da = BCu^ROL(BCe, 1); | |||
De = BCa^ROL(BCi, 1); | |||
Di = BCe^ROL(BCo, 1); | |||
Do = BCi^ROL(BCu, 1); | |||
Du = BCo^ROL(BCa, 1); | |||
Eba ^= Da; | |||
BCa = Eba; | |||
Ege ^= De; | |||
BCe = ROL(Ege, 44); | |||
Eki ^= Di; | |||
BCi = ROL(Eki, 43); | |||
Emo ^= Do; | |||
BCo = ROL(Emo, 21); | |||
Esu ^= Du; | |||
BCu = ROL(Esu, 14); | |||
Aba = BCa ^((~BCe)& BCi ); | |||
Aba ^= (uint64_t)KeccakF_RoundConstants[round+1]; | |||
Abe = BCe ^((~BCi)& BCo ); | |||
Abi = BCi ^((~BCo)& BCu ); | |||
Abo = BCo ^((~BCu)& BCa ); | |||
Abu = BCu ^((~BCa)& BCe ); | |||
Ebo ^= Do; | |||
BCa = ROL(Ebo, 28); | |||
Egu ^= Du; | |||
BCe = ROL(Egu, 20); | |||
Eka ^= Da; | |||
BCi = ROL(Eka, 3); | |||
Eme ^= De; | |||
BCo = ROL(Eme, 45); | |||
Esi ^= Di; | |||
BCu = ROL(Esi, 61); | |||
Aga = BCa ^((~BCe)& BCi ); | |||
Age = BCe ^((~BCi)& BCo ); | |||
Agi = BCi ^((~BCo)& BCu ); | |||
Ago = BCo ^((~BCu)& BCa ); | |||
Agu = BCu ^((~BCa)& BCe ); | |||
Ebe ^= De; | |||
BCa = ROL(Ebe, 1); | |||
Egi ^= Di; | |||
BCe = ROL(Egi, 6); | |||
Eko ^= Do; | |||
BCi = ROL(Eko, 25); | |||
Emu ^= Du; | |||
BCo = ROL(Emu, 8); | |||
Esa ^= Da; | |||
BCu = ROL(Esa, 18); | |||
Aka = BCa ^((~BCe)& BCi ); | |||
Ake = BCe ^((~BCi)& BCo ); | |||
Aki = BCi ^((~BCo)& BCu ); | |||
Ako = BCo ^((~BCu)& BCa ); | |||
Aku = BCu ^((~BCa)& BCe ); | |||
Ebu ^= Du; | |||
BCa = ROL(Ebu, 27); | |||
Ega ^= Da; | |||
BCe = ROL(Ega, 36); | |||
Eke ^= De; | |||
BCi = ROL(Eke, 10); | |||
Emi ^= Di; | |||
BCo = ROL(Emi, 15); | |||
Eso ^= Do; | |||
BCu = ROL(Eso, 56); | |||
Ama = BCa ^((~BCe)& BCi ); | |||
Ame = BCe ^((~BCi)& BCo ); | |||
Ami = BCi ^((~BCo)& BCu ); | |||
Amo = BCo ^((~BCu)& BCa ); | |||
Amu = BCu ^((~BCa)& BCe ); | |||
Ebi ^= Di; | |||
BCa = ROL(Ebi, 62); | |||
Ego ^= Do; | |||
BCe = ROL(Ego, 55); | |||
Eku ^= Du; | |||
BCi = ROL(Eku, 39); | |||
Ema ^= Da; | |||
BCo = ROL(Ema, 41); | |||
Ese ^= De; | |||
BCu = ROL(Ese, 2); | |||
Asa = BCa ^((~BCe)& BCi ); | |||
Ase = BCe ^((~BCi)& BCo ); | |||
Asi = BCi ^((~BCo)& BCu ); | |||
Aso = BCo ^((~BCu)& BCa ); | |||
Asu = BCu ^((~BCa)& BCe ); | |||
} | |||
//copyToState(state, A) | |||
state[ 0] = Aba; | |||
state[ 1] = Abe; | |||
state[ 2] = Abi; | |||
state[ 3] = Abo; | |||
state[ 4] = Abu; | |||
state[ 5] = Aga; | |||
state[ 6] = Age; | |||
state[ 7] = Agi; | |||
state[ 8] = Ago; | |||
state[ 9] = Agu; | |||
state[10] = Aka; | |||
state[11] = Ake; | |||
state[12] = Aki; | |||
state[13] = Ako; | |||
state[14] = Aku; | |||
state[15] = Ama; | |||
state[16] = Ame; | |||
state[17] = Ami; | |||
state[18] = Amo; | |||
state[19] = Amu; | |||
state[20] = Asa; | |||
state[21] = Ase; | |||
state[22] = Asi; | |||
state[23] = Aso; | |||
state[24] = Asu; | |||
#undef round | |||
//copyToState(state, A) | |||
state[ 0] = Aba; | |||
state[ 1] = Abe; | |||
state[ 2] = Abi; | |||
state[ 3] = Abo; | |||
state[ 4] = Abu; | |||
state[ 5] = Aga; | |||
state[ 6] = Age; | |||
state[ 7] = Agi; | |||
state[ 8] = Ago; | |||
state[ 9] = Agu; | |||
state[10] = Aka; | |||
state[11] = Ake; | |||
state[12] = Aki; | |||
state[13] = Ako; | |||
state[14] = Aku; | |||
state[15] = Ama; | |||
state[16] = Ame; | |||
state[17] = Ami; | |||
state[18] = Amo; | |||
state[19] = Amu; | |||
state[20] = Asa; | |||
state[21] = Ase; | |||
state[22] = Asi; | |||
state[23] = Aso; | |||
state[24] = Asu; | |||
} | |||
#include <string.h> | |||
#define MIN(a, b) ((a) < (b) ? (a) : (b)) | |||
static void keccak_absorb(uint64_t *s, | |||
unsigned int r, | |||
const unsigned char *m, unsigned long long int mlen, | |||
static void keccak_absorb(uint64_t *s, unsigned int r, | |||
const unsigned char *m, unsigned long long mlen, | |||
unsigned char p) | |||
{ | |||
unsigned long long i; | |||
unsigned char t[200]; | |||
while (mlen >= r) | |||
{ | |||
for (i = 0; i < r / 8; ++i) | |||
s[i] ^= load64(m + 8 * i); | |||
KeccakF1600_StatePermute(s); | |||
mlen -= r; | |||
m += r; | |||
} | |||
for (i = 0; i < r; ++i) | |||
t[i] = 0; | |||
for (i = 0; i < mlen; ++i) | |||
t[i] = m[i]; | |||
t[i] = p; | |||
t[r - 1] |= 128; | |||
for (i = 0; i < r / 8; ++i) | |||
s[i] ^= load64(t + 8 * i); | |||
unsigned long long i; | |||
unsigned char t[200]; | |||
while (mlen >= r) { | |||
for (i = 0; i < r / 8; ++i) { | |||
s[i] ^= load64(m + 8 * i); | |||
} | |||
KeccakF1600_StatePermute(s); | |||
mlen -= r; | |||
m += r; | |||
} | |||
for (i = 0; i < r; ++i) { | |||
t[i] = 0; | |||
} | |||
for (i = 0; i < mlen; ++i) { | |||
t[i] = m[i]; | |||
} | |||
t[i] = p; | |||
t[r - 1] |= 128; | |||
for (i = 0; i < r / 8; ++i) { | |||
s[i] ^= load64(t + 8 * i); | |||
} | |||
} | |||
static void keccak_squeezeblocks(unsigned char *h, unsigned long long int nblocks, | |||
uint64_t *s, | |||
unsigned int r) | |||
static void keccak_squeezeblocks(unsigned char *h, unsigned long long nblocks, | |||
uint64_t *s, unsigned int r) | |||
{ | |||
unsigned int i; | |||
while(nblocks > 0) | |||
{ | |||
KeccakF1600_StatePermute(s); | |||
for(i=0;i<(r>>3);i++) | |||
{ | |||
store64(h+8*i, s[i]); | |||
unsigned int i; | |||
while (nblocks > 0) { | |||
KeccakF1600_StatePermute(s); | |||
for (i = 0; i < (r >> 3); i++) { | |||
store64(h + 8*i, s[i]); | |||
} | |||
h += r; | |||
nblocks--; | |||
} | |||
h += r; | |||
nblocks--; | |||
} | |||
} | |||
void shake128(unsigned char *output, unsigned int outputByteLen, const unsigned char *input, unsigned int inputByteLen) | |||
void shake128(unsigned char *out, unsigned long long outlen, | |||
const unsigned char *in, unsigned long long inlen) | |||
{ | |||
unsigned int i; | |||
uint64_t s[25]; | |||
unsigned char d[SHAKE128_RATE]; | |||
unsigned long long i; | |||
uint64_t s[25]; | |||
unsigned char d[SHAKE128_RATE]; | |||
for(i = 0; i < 25; i++) | |||
s[i] = 0; | |||
keccak_absorb(s, SHAKE128_RATE, input, inputByteLen, 0x1F); | |||
for (i = 0; i < 25; i++) { | |||
s[i] = 0; | |||
} | |||
keccak_absorb(s, SHAKE128_RATE, in, inlen, 0x1F); | |||
keccak_squeezeblocks(output, outputByteLen/SHAKE128_RATE, s, SHAKE128_RATE); | |||
output += (outputByteLen/SHAKE128_RATE)*SHAKE128_RATE; | |||
keccak_squeezeblocks(out, outlen / SHAKE128_RATE, s, SHAKE128_RATE); | |||
out += (outlen / SHAKE128_RATE) * SHAKE128_RATE; | |||
if (outputByteLen % SHAKE128_RATE) { | |||
keccak_squeezeblocks(d, 1, s, SHAKE128_RATE); | |||
for(i = 0; i < outputByteLen % SHAKE128_RATE; i++) { | |||
output[i] = d[i]; | |||
if (outlen % SHAKE128_RATE) { | |||
keccak_squeezeblocks(d, 1, s, SHAKE128_RATE); | |||
for (i = 0; i < outlen % SHAKE128_RATE; i++) { | |||
out[i] = d[i]; | |||
} | |||
} | |||
} | |||
} | |||
void shake256(unsigned char *output, unsigned int outputByteLen, const unsigned char *input, unsigned int inputByteLen) | |||
void shake256(unsigned char *output, unsigned long long outlen, | |||
const unsigned char *in, unsigned long long inlen) | |||
{ | |||
unsigned int i; | |||
uint64_t s[25]; | |||
unsigned char d[SHAKE256_RATE]; | |||
unsigned long long i; | |||
uint64_t s[25]; | |||
unsigned char d[SHAKE256_RATE]; | |||
for(i = 0; i < 25; i++) | |||
s[i] = 0; | |||
keccak_absorb(s, SHAKE256_RATE, input, inputByteLen, 0x1F); | |||
for (i = 0; i < 25; i++) { | |||
s[i] = 0; | |||
} | |||
keccak_absorb(s, SHAKE256_RATE, in, inlen, 0x1F); | |||
keccak_squeezeblocks(output, outputByteLen/SHAKE256_RATE, s, SHAKE256_RATE); | |||
output += (outputByteLen/SHAKE256_RATE)*SHAKE256_RATE; | |||
keccak_squeezeblocks(output, outlen / SHAKE256_RATE, s, SHAKE256_RATE); | |||
output += (outlen / SHAKE256_RATE) * SHAKE256_RATE; | |||
if (outputByteLen % SHAKE256_RATE) { | |||
keccak_squeezeblocks(d, 1, s, SHAKE256_RATE); | |||
for(i = 0; i < outputByteLen % SHAKE256_RATE; i++) { | |||
output[i] = d[i]; | |||
if (outlen % SHAKE256_RATE) { | |||
keccak_squeezeblocks(d, 1, s, SHAKE256_RATE); | |||
for (i = 0; i < outlen % SHAKE256_RATE; i++) { | |||
output[i] = d[i]; | |||
} | |||
} | |||
} | |||
} |
@@ -1,12 +1,13 @@ | |||
#ifndef FIPS202_H | |||
#define FIPS202_H | |||
#include <stdint.h> | |||
#define SHAKE128_RATE 168 | |||
#define SHAKE256_RATE 136 | |||
void shake128(unsigned char *output, unsigned int outputByteLen, const unsigned char *input, unsigned int inputByteLen); | |||
void shake256(unsigned char *output, unsigned int outputByteLen, const unsigned char *input, unsigned int inputByteLen); | |||
void shake128(unsigned char *out, unsigned long long outlen, | |||
const unsigned char *in, unsigned long long inlen); | |||
void shake256(unsigned char *out, unsigned long long outlen, | |||
const unsigned char *in, unsigned long long inlen); | |||
#endif |
@@ -11,8 +11,6 @@ Public domain. | |||
#include "hash.h" | |||
#include "fips202.h" | |||
#include <stddef.h> | |||
#include <stdio.h> | |||
#include <stdint.h> | |||
#include <string.h> | |||
#include <openssl/sha.h> | |||
@@ -20,117 +18,113 @@ Public domain. | |||
unsigned char* addr_to_byte(unsigned char *bytes, const uint32_t addr[8]) | |||
{ | |||
#if IS_LITTLE_ENDIAN==1 | |||
int i = 0; | |||
for(i=0;i<8;i++) | |||
to_byte(bytes+i*4, addr[i],4); | |||
return bytes; | |||
int i; | |||
for (i = 0; i < 8; i++) { | |||
to_byte(bytes + i*4, addr[i], 4); | |||
} | |||
#else | |||
memcpy(bytes, addr, 32); | |||
return bytes; | |||
memcpy(bytes, addr, 32); | |||
#endif | |||
return bytes; | |||
} | |||
static int core_hash(unsigned char *out, const unsigned int type, const unsigned char *key, unsigned int keylen, const unsigned char *in, unsigned long long inlen, int n) | |||
static int core_hash(unsigned char *out, const unsigned int type, | |||
const unsigned char *key, unsigned int keylen, | |||
const unsigned char *in, unsigned long long inlen, int n) | |||
{ | |||
unsigned long long i = 0; | |||
unsigned char buf[inlen + n + keylen]; | |||
// Input is (toByte(X, 32) || KEY || M) | |||
// set toByte | |||
to_byte(buf, type, n); | |||
for (i=0; i < keylen; i++) { | |||
buf[i+n] = key[i]; | |||
} | |||
for (i=0; i < inlen; i++) { | |||
buf[keylen + n + i] = in[i]; | |||
} | |||
if (n == 32 && XMSS_FUNC == XMSS_SHA2) { | |||
SHA256(buf, inlen + keylen + n, out); | |||
} | |||
else if (n == 32 && XMSS_FUNC == XMSS_SHAKE) { | |||
shake128(out, 32, buf, inlen + keylen + n); | |||
} | |||
else if (n == 64 && XMSS_FUNC == XMSS_SHA2) { | |||
SHA512(buf, inlen + keylen + n, out); | |||
} | |||
else if (n == 64 && XMSS_FUNC == XMSS_SHAKE) { | |||
shake256(out, 64, buf, inlen + keylen + n); | |||
} | |||
else { | |||
return 1; | |||
} | |||
return 0; | |||
unsigned long long i = 0; | |||
unsigned char buf[inlen + n + keylen]; | |||
/* Input is of the form (toByte(X, 32) || KEY || M). */ | |||
to_byte(buf, type, n); | |||
for (i=0; i < keylen; i++) { | |||
buf[i+n] = key[i]; | |||
} | |||
for (i=0; i < inlen; i++) { | |||
buf[keylen + n + i] = in[i]; | |||
} | |||
if (n == 32 && XMSS_FUNC == XMSS_SHA2) { | |||
SHA256(buf, inlen + keylen + n, out); | |||
} | |||
else if (n == 32 && XMSS_FUNC == XMSS_SHAKE) { | |||
shake128(out, 32, buf, inlen + keylen + n); | |||
} | |||
else if (n == 64 && XMSS_FUNC == XMSS_SHA2) { | |||
SHA512(buf, inlen + keylen + n, out); | |||
} | |||
else if (n == 64 && XMSS_FUNC == XMSS_SHAKE) { | |||
shake256(out, 64, buf, inlen + keylen + n); | |||
} | |||
else { | |||
return 1; | |||
} | |||
return 0; | |||
} | |||
/** | |||
* Implements PRF | |||
*/ | |||
int prf(unsigned char *out, const unsigned char *in, const unsigned char *key, unsigned int keylen) | |||
int prf(unsigned char *out, const unsigned char *in, | |||
const unsigned char *key, unsigned int keylen) | |||
{ | |||
return core_hash(out, 3, key, keylen, in, 32, keylen); | |||
return core_hash(out, 3, key, keylen, in, 32, keylen); | |||
} | |||
/* | |||
* Implemts H_msg | |||
*/ | |||
int h_msg(unsigned char *out, const unsigned char *in, unsigned long long inlen, const unsigned char *key, const unsigned int keylen) | |||
int h_msg(unsigned char *out, | |||
const unsigned char *in, unsigned long long inlen, | |||
const unsigned char *key, const unsigned int keylen) | |||
{ | |||
if (keylen != 3*XMSS_N){ | |||
fprintf(stderr, "H_msg takes 3n-bit keys, we got n=%d but a keylength of %d.\n", XMSS_N, keylen); | |||
return 1; | |||
} | |||
return core_hash(out, 2, key, keylen, in, inlen, XMSS_N); | |||
return core_hash(out, 2, key, keylen, in, inlen, XMSS_N); | |||
} | |||
/** | |||
* We assume the left half is in in[0]...in[n-1] | |||
*/ | |||
int hash_h(unsigned char *out, const unsigned char *in, const unsigned char *pub_seed, uint32_t addr[8]) | |||
int hash_h(unsigned char *out, const unsigned char *in, | |||
const unsigned char *pub_seed, uint32_t addr[8]) | |||
{ | |||
unsigned char buf[2*XMSS_N]; | |||
unsigned char key[XMSS_N]; | |||
unsigned char bitmask[2*XMSS_N]; | |||
unsigned char byte_addr[32]; | |||
unsigned int i; | |||
setKeyAndMask(addr, 0); | |||
addr_to_byte(byte_addr, addr); | |||
prf(key, byte_addr, pub_seed, XMSS_N); | |||
// Use MSB order | |||
setKeyAndMask(addr, 1); | |||
addr_to_byte(byte_addr, addr); | |||
prf(bitmask, byte_addr, pub_seed, XMSS_N); | |||
setKeyAndMask(addr, 2); | |||
addr_to_byte(byte_addr, addr); | |||
prf(bitmask+XMSS_N, byte_addr, pub_seed, XMSS_N); | |||
for (i = 0; i < 2*XMSS_N; i++) { | |||
buf[i] = in[i] ^ bitmask[i]; | |||
} | |||
return core_hash(out, 1, key, XMSS_N, buf, 2*XMSS_N, XMSS_N); | |||
unsigned char buf[2*XMSS_N]; | |||
unsigned char key[XMSS_N]; | |||
unsigned char bitmask[2*XMSS_N]; | |||
unsigned char byte_addr[32]; | |||
unsigned int i; | |||
set_key_and_mask(addr, 0); | |||
addr_to_byte(byte_addr, addr); | |||
prf(key, byte_addr, pub_seed, XMSS_N); | |||
// Use MSB order | |||
set_key_and_mask(addr, 1); | |||
addr_to_byte(byte_addr, addr); | |||
prf(bitmask, byte_addr, pub_seed, XMSS_N); | |||
set_key_and_mask(addr, 2); | |||
addr_to_byte(byte_addr, addr); | |||
prf(bitmask+XMSS_N, byte_addr, pub_seed, XMSS_N); | |||
for (i = 0; i < 2*XMSS_N; i++) { | |||
buf[i] = in[i] ^ bitmask[i]; | |||
} | |||
return core_hash(out, 1, key, XMSS_N, buf, 2*XMSS_N, XMSS_N); | |||
} | |||
int hash_f(unsigned char *out, const unsigned char *in, const unsigned char *pub_seed, uint32_t addr[8]) | |||
int hash_f(unsigned char *out, const unsigned char *in, | |||
const unsigned char *pub_seed, uint32_t addr[8]) | |||
{ | |||
unsigned char buf[XMSS_N]; | |||
unsigned char key[XMSS_N]; | |||
unsigned char bitmask[XMSS_N]; | |||
unsigned char byte_addr[32]; | |||
unsigned int i; | |||
setKeyAndMask(addr, 0); | |||
addr_to_byte(byte_addr, addr); | |||
prf(key, byte_addr, pub_seed, XMSS_N); | |||
setKeyAndMask(addr, 1); | |||
addr_to_byte(byte_addr, addr); | |||
prf(bitmask, byte_addr, pub_seed, XMSS_N); | |||
for (i = 0; i < XMSS_N; i++) { | |||
buf[i] = in[i] ^ bitmask[i]; | |||
} | |||
return core_hash(out, 0, key, XMSS_N, buf, XMSS_N, XMSS_N); | |||
unsigned char buf[XMSS_N]; | |||
unsigned char key[XMSS_N]; | |||
unsigned char bitmask[XMSS_N]; | |||
unsigned char byte_addr[32]; | |||
unsigned int i; | |||
set_key_and_mask(addr, 0); | |||
addr_to_byte(byte_addr, addr); | |||
prf(key, byte_addr, pub_seed, XMSS_N); | |||
set_key_and_mask(addr, 1); | |||
addr_to_byte(byte_addr, addr); | |||
prf(bitmask, byte_addr, pub_seed, XMSS_N); | |||
for (i = 0; i < XMSS_N; i++) { | |||
buf[i] = in[i] ^ bitmask[i]; | |||
} | |||
return core_hash(out, 0, key, XMSS_N, buf, XMSS_N, XMSS_N); | |||
} |
@@ -11,9 +11,18 @@ Public domain. | |||
#define IS_LITTLE_ENDIAN 1 | |||
unsigned char* addr_to_byte(unsigned char *bytes, const uint32_t addr[8]); | |||
int prf(unsigned char *out, const unsigned char *in, const unsigned char *key, unsigned int keylen); | |||
int h_msg(unsigned char *out,const unsigned char *in,unsigned long long inlen, const unsigned char *key, const unsigned int keylen); | |||
int hash_h(unsigned char *out, const unsigned char *in, const unsigned char *pub_seed, uint32_t addr[8]); | |||
int hash_f(unsigned char *out, const unsigned char *in, const unsigned char *pub_seed, uint32_t addr[8]); | |||
int prf(unsigned char *out, const unsigned char *in, | |||
const unsigned char *key, unsigned int keylen); | |||
int h_msg(unsigned char *out, | |||
const unsigned char *in, unsigned long long inlen, | |||
const unsigned char *key, const unsigned int keylen); | |||
int hash_h(unsigned char *out, const unsigned char *in, | |||
const unsigned char *pub_seed, uint32_t addr[8]); | |||
int hash_f(unsigned char *out, const unsigned char *in, | |||
const unsigned char *pub_seed, uint32_t addr[8]); | |||
#endif |
@@ -6,53 +6,54 @@ Public domain. | |||
*/ | |||
#include <stdint.h> | |||
void setLayerADRS(uint32_t adrs[8], uint32_t layer){ | |||
adrs[0] = layer; | |||
void set_layer_addr(uint32_t addr[8], uint32_t layer) { | |||
addr[0] = layer; | |||
} | |||
void setTreeADRS(uint32_t adrs[8], uint64_t tree){ | |||
adrs[1] = (uint32_t) (tree >> 32); | |||
adrs[2] = (uint32_t) tree; | |||
void set_tree_addr(uint32_t addr[8], uint64_t tree) { | |||
addr[1] = (uint32_t) (tree >> 32); | |||
addr[2] = (uint32_t) tree; | |||
} | |||
void setType(uint32_t adrs[8], uint32_t type){ | |||
adrs[3] = type; | |||
int i; | |||
for(i = 4; i < 8; i++){ | |||
adrs[i] = 0; | |||
} | |||
void set_type(uint32_t addr[8], uint32_t type) { | |||
int i; | |||
addr[3] = type; | |||
for (i = 4; i < 8; i++) { | |||
addr[i] = 0; | |||
} | |||
} | |||
void setKeyAndMask(uint32_t adrs[8], uint32_t keyAndMask){ | |||
adrs[7] = keyAndMask; | |||
void set_key_and_mask(uint32_t addr[8], uint32_t key_and_mask) { | |||
addr[7] = key_and_mask; | |||
} | |||
// OTS | |||
/* These functions are used for OTS addresses. */ | |||
void setOTSADRS(uint32_t adrs[8], uint32_t ots){ | |||
adrs[4] = ots; | |||
void set_ots_addr(uint32_t addr[8], uint32_t ots) { | |||
addr[4] = ots; | |||
} | |||
void setChainADRS(uint32_t adrs[8], uint32_t chain){ | |||
adrs[5] = chain; | |||
void set_chain_addr(uint32_t addr[8], uint32_t chain) { | |||
addr[5] = chain; | |||
} | |||
void setHashADRS(uint32_t adrs[8], uint32_t hash){ | |||
adrs[6] = hash; | |||
void set_hash_addr(uint32_t addr[8], uint32_t hash) { | |||
addr[6] = hash; | |||
} | |||
// L-tree | |||
/* This function is used for L-trees. */ | |||
void setLtreeADRS(uint32_t adrs[8], uint32_t ltree){ | |||
adrs[4] = ltree; | |||
void set_ltree_addr(uint32_t addr[8], uint32_t ltree) { | |||
addr[4] = ltree; | |||
} | |||
// Hash Tree & L-tree | |||
/* These functions are used for hash tree addresses. */ | |||
void setTreeHeight(uint32_t adrs[8], uint32_t treeHeight){ | |||
adrs[5] = treeHeight; | |||
void set_tree_height(uint32_t addr[8], uint32_t treeHeight) { | |||
addr[5] = treeHeight; | |||
} | |||
void setTreeIndex(uint32_t adrs[8], uint32_t treeIndex){ | |||
adrs[6] = treeIndex; | |||
} | |||
void set_tree_index(uint32_t addr[8], uint32_t treeIndex) { | |||
addr[6] = treeIndex; | |||
} |
@@ -7,31 +7,28 @@ Public domain. | |||
#include <stdint.h> | |||
void setLayerADRS(uint32_t adrs[8], uint32_t layer); | |||
void set_layer_addr(uint32_t addr[8], uint32_t layer); | |||
void setTreeADRS(uint32_t adrs[8], uint64_t tree); | |||
void set_tree_addr(uint32_t addr[8], uint64_t tree); | |||
void setType(uint32_t adrs[8], uint32_t type); | |||
void set_type(uint32_t addr[8], uint32_t type); | |||
void setKeyAndMask(uint32_t adrs[8], uint32_t keyAndMask); | |||
void set_key_and_mask(uint32_t addr[8], uint32_t key_and_mask); | |||
// OTS | |||
/* These functions are used for OTS addresses. */ | |||
void setOTSADRS(uint32_t adrs[8], uint32_t ots); | |||
void set_ots_addr(uint32_t addr[8], uint32_t ots); | |||
void setChainADRS(uint32_t adrs[8], uint32_t chain); | |||
void set_chain_addr(uint32_t addr[8], uint32_t chain); | |||
void setHashADRS(uint32_t adrs[8], uint32_t hash); | |||
void set_hash_addr(uint32_t addr[8], uint32_t hash); | |||
// L-tree | |||
/* This function is used for L-trees. */ | |||
void setLtreeADRS(uint32_t adrs[8], uint32_t ltree); | |||
// Hash Tree & L-tree | |||
void setTreeHeight(uint32_t adrs[8], uint32_t treeHeight); | |||
void setTreeIndex(uint32_t adrs[8], uint32_t treeIndex); | |||
void set_ltree_addr(uint32_t addr[8], uint32_t ltree); | |||
/* These functions are used for hash tree addresses. */ | |||
void set_tree_height(uint32_t addr[8], uint32_t treeHeight); | |||
void set_tree_index(uint32_t addr[8], uint32_t treeIndex); |
@@ -2,37 +2,40 @@ | |||
This code was taken from the SPHINCS reference implementation and is public domain. | |||
*/ | |||
#include <sys/types.h> | |||
#include <sys/stat.h> | |||
#include <fcntl.h> | |||
#include <unistd.h> | |||
/* it's really stupid that there isn't a syscall for this */ | |||
static int fd = -1; | |||
void randombytes(unsigned char *x, unsigned long long xlen) | |||
{ | |||
int i; | |||
if (fd == -1) { | |||
for (;;) { | |||
fd = open("/dev/urandom", O_RDONLY); | |||
if (fd != -1) break; | |||
sleep(1); | |||
int i; | |||
if (fd == -1) { | |||
for (;;) { | |||
fd = open("/dev/urandom", O_RDONLY); | |||
if (fd != -1) { | |||
break; | |||
} | |||
sleep(1); | |||
} | |||
} | |||
} | |||
while (xlen > 0) { | |||
if (xlen < 1048576) i = xlen; else i = 1048576; | |||
i = read(fd, x, i); | |||
if (i < 1) { | |||
sleep(1); | |||
continue; | |||
while (xlen > 0) { | |||
if (xlen < 1048576) { | |||
i = xlen; | |||
} | |||
else { | |||
i = 1048576; | |||
} | |||
i = read(fd, x, i); | |||
if (i < 1) { | |||
sleep(1); | |||
continue; | |||
} | |||
x += i; | |||
xlen -= i; | |||
} | |||
x += i; | |||
xlen -= i; | |||
} | |||
} |
@@ -34,7 +34,7 @@ int main() | |||
wots_pkgen(pk1, seed, pub_seed, addr); | |||
wots_sign(sig, msg, seed, pub_seed, addr); | |||
wots_pkFromSig(pk2, sig, msg, pub_seed, addr); | |||
wots_pk_from_sig(pk2, sig, msg, pub_seed, addr); | |||
for (i = 0; i < sig_len; i++) | |||
if (pk1[i] != pk2[i]) { | |||
@@ -5,9 +5,7 @@ Joost Rijneveld | |||
Public domain. | |||
*/ | |||
#include "math.h" | |||
#include "stdio.h" | |||
#include "stdint.h" | |||
#include <stdint.h> | |||
#include "xmss_commons.h" | |||
#include "hash.h" | |||
#include "wots.h" | |||
@@ -21,12 +19,13 @@ Public domain. | |||
*/ | |||
static void expand_seed(unsigned char *outseeds, const unsigned char *inseed) | |||
{ | |||
uint32_t i = 0; | |||
unsigned char ctr[32]; | |||
for(i = 0; i < XMSS_WOTS_LEN; i++){ | |||
to_byte(ctr, i, 32); | |||
prf(outseeds + i*XMSS_N, ctr, inseed, XMSS_N); | |||
} | |||
uint32_t i; | |||
unsigned char ctr[32]; | |||
for (i = 0; i < XMSS_WOTS_LEN; i++) { | |||
to_byte(ctr, i, 32); | |||
prf(outseeds + i*XMSS_N, ctr, inseed, XMSS_N); | |||
} | |||
} | |||
/** | |||
@@ -36,115 +35,120 @@ static void expand_seed(unsigned char *outseeds, const unsigned char *inseed) | |||
* interpretes in as start-th value of the chain | |||
* addr has to contain the address of the chain | |||
*/ | |||
static void gen_chain(unsigned char *out, const unsigned char *in, unsigned int start, unsigned int steps, const unsigned char *pub_seed, uint32_t addr[8]) | |||
static void gen_chain(unsigned char *out, const unsigned char *in, | |||
unsigned int start, unsigned int steps, | |||
const unsigned char *pub_seed, uint32_t addr[8]) | |||
{ | |||
uint32_t i, j; | |||
for (j = 0; j < XMSS_N; j++) | |||
out[j] = in[j]; | |||
for (i = start; i < (start+steps) && i < XMSS_WOTS_W; i++) { | |||
setHashADRS(addr, i); | |||
hash_f(out, out, pub_seed, addr); | |||
} | |||
uint32_t i; | |||
for (i = 0; i < XMSS_N; i++) { | |||
out[i] = in[i]; | |||
} | |||
for (i = start; i < (start+steps) && i < XMSS_WOTS_W; i++) { | |||
set_hash_addr(addr, i); | |||
hash_f(out, out, pub_seed, addr); | |||
} | |||
} | |||
/** | |||
* base_w algorithm as described in draft. | |||
* | |||
* | |||
*/ | |||
static void base_w(int *output, const int out_len, const unsigned char *input) | |||
{ | |||
int in = 0; | |||
int out = 0; | |||
uint8_t total = 0; | |||
int bits = 0; | |||
int consumed = 0; | |||
for (consumed = 0; consumed < out_len; consumed++) { | |||
if (bits == 0) { | |||
total = input[in]; | |||
in++; | |||
bits += 8; | |||
int in = 0; | |||
int out = 0; | |||
uint8_t total = 0; | |||
int bits = 0; | |||
int i; | |||
for (i = 0; i < out_len; i++) { | |||
if (bits == 0) { | |||
total = input[in]; | |||
in++; | |||
bits += 8; | |||
} | |||
bits -= XMSS_WOTS_LOG_W; | |||
output[out] = (total >> bits) & (XMSS_WOTS_W - 1); | |||
out++; | |||
} | |||
bits -= XMSS_WOTS_LOG_W; | |||
output[out] = (total >> bits) & (XMSS_WOTS_W - 1); | |||
out++; | |||
} | |||
} | |||
void wots_pkgen(unsigned char *pk, const unsigned char *sk, const unsigned char *pub_seed, uint32_t addr[8]) | |||
void wots_pkgen(unsigned char *pk, const unsigned char *sk, | |||
const unsigned char *pub_seed, uint32_t addr[8]) | |||
{ | |||
uint32_t i; | |||
expand_seed(pk, sk); | |||
for (i=0; i < XMSS_WOTS_LEN; i++) { | |||
setChainADRS(addr, i); | |||
gen_chain(pk+i*XMSS_N, pk+i*XMSS_N, 0, XMSS_WOTS_W-1, pub_seed, addr); | |||
} | |||
uint32_t i; | |||
expand_seed(pk, sk); | |||
for (i = 0; i < XMSS_WOTS_LEN; i++) { | |||
set_chain_addr(addr, i); | |||
gen_chain(pk + i*XMSS_N, pk + i*XMSS_N, | |||
0, XMSS_WOTS_W-1, pub_seed, addr); | |||
} | |||
} | |||
void wots_sign(unsigned char *sig, const unsigned char *msg, const unsigned char *sk, const unsigned char *pub_seed, uint32_t addr[8]) | |||
void wots_sign(unsigned char *sig, const unsigned char *msg, | |||
const unsigned char *sk, const unsigned char *pub_seed, | |||
uint32_t addr[8]) | |||
{ | |||
int basew[XMSS_WOTS_LEN]; | |||
int csum = 0; | |||
uint32_t i = 0; | |||
int basew[XMSS_WOTS_LEN]; | |||
int csum = 0; | |||
unsigned char csum_bytes[((XMSS_WOTS_LEN2 * XMSS_WOTS_LOG_W) + 7) / 8]; | |||
int csum_basew[XMSS_WOTS_LEN2]; | |||
uint32_t i; | |||
base_w(basew, XMSS_WOTS_LEN1, msg); | |||
base_w(basew, XMSS_WOTS_LEN1, msg); | |||
for (i=0; i < XMSS_WOTS_LEN1; i++) { | |||
csum += XMSS_WOTS_W - 1 - basew[i]; | |||
} | |||
csum = csum << (8 - ((XMSS_WOTS_LEN2 * XMSS_WOTS_LOG_W) % 8)); | |||
int len_2_bytes = ((XMSS_WOTS_LEN2 * XMSS_WOTS_LOG_W) + 7) / 8; | |||
for (i = 0; i < XMSS_WOTS_LEN1; i++) { | |||
csum += XMSS_WOTS_W - 1 - basew[i]; | |||
} | |||
unsigned char csum_bytes[len_2_bytes]; | |||
to_byte(csum_bytes, csum, len_2_bytes); | |||
csum = csum << (8 - ((XMSS_WOTS_LEN2 * XMSS_WOTS_LOG_W) % 8)); | |||
int csum_basew[XMSS_WOTS_LEN2]; | |||
base_w(csum_basew, XMSS_WOTS_LEN2, csum_bytes); | |||
to_byte(csum_bytes, csum, ((XMSS_WOTS_LEN2 * XMSS_WOTS_LOG_W) + 7) / 8); | |||
base_w(csum_basew, XMSS_WOTS_LEN2, csum_bytes); | |||
for (i = 0; i < XMSS_WOTS_LEN2; i++) { | |||
basew[XMSS_WOTS_LEN1 + i] = csum_basew[i]; | |||
} | |||
for (i = 0; i < XMSS_WOTS_LEN2; i++) { | |||
basew[XMSS_WOTS_LEN1 + i] = csum_basew[i]; | |||
} | |||
expand_seed(sig, sk); | |||
expand_seed(sig, sk); | |||
for (i = 0; i < XMSS_WOTS_LEN; i++) { | |||
setChainADRS(addr, i); | |||
gen_chain(sig+i*XMSS_N, sig+i*XMSS_N, 0, basew[i], pub_seed, addr); | |||
} | |||
for (i = 0; i < XMSS_WOTS_LEN; i++) { | |||
set_chain_addr(addr, i); | |||
gen_chain(sig + i*XMSS_N, sig + i*XMSS_N, | |||
0, basew[i], pub_seed, addr); | |||
} | |||
} | |||
void wots_pkFromSig(unsigned char *pk, const unsigned char *sig, const unsigned char *msg, const unsigned char *pub_seed, uint32_t addr[8]) | |||
void wots_pk_from_sig(unsigned char *pk, | |||
const unsigned char *sig, const unsigned char *msg, | |||
const unsigned char *pub_seed, uint32_t addr[8]) | |||
{ | |||
int basew[XMSS_WOTS_LEN]; | |||
int csum = 0; | |||
uint32_t i = 0; | |||
int basew[XMSS_WOTS_LEN]; | |||
int csum = 0; | |||
unsigned char csum_bytes[((XMSS_WOTS_LEN2 * XMSS_WOTS_LOG_W) + 7) / 8]; | |||
int csum_basew[XMSS_WOTS_LEN2]; | |||
uint32_t i = 0; | |||
base_w(basew, XMSS_WOTS_LEN1, msg); | |||
base_w(basew, XMSS_WOTS_LEN1, msg); | |||
for (i=0; i < XMSS_WOTS_LEN1; i++) { | |||
csum += XMSS_WOTS_W - 1 - basew[i]; | |||
} | |||
csum = csum << (8 - ((XMSS_WOTS_LEN2 * XMSS_WOTS_LOG_W) % 8)); | |||
int len_2_bytes = ((XMSS_WOTS_LEN2 * XMSS_WOTS_LOG_W) + 7) / 8; | |||
for (i=0; i < XMSS_WOTS_LEN1; i++) { | |||
csum += XMSS_WOTS_W - 1 - basew[i]; | |||
} | |||
unsigned char csum_bytes[len_2_bytes]; | |||
to_byte(csum_bytes, csum, len_2_bytes); | |||
csum = csum << (8 - ((XMSS_WOTS_LEN2 * XMSS_WOTS_LOG_W) % 8)); | |||
int csum_basew[XMSS_WOTS_LEN2]; | |||
base_w(csum_basew, XMSS_WOTS_LEN2, csum_bytes); | |||
to_byte(csum_bytes, csum, ((XMSS_WOTS_LEN2 * XMSS_WOTS_LOG_W) + 7) / 8); | |||
base_w(csum_basew, XMSS_WOTS_LEN2, csum_bytes); | |||
for (i = 0; i < XMSS_WOTS_LEN2; i++) { | |||
basew[XMSS_WOTS_LEN1 + i] = csum_basew[i]; | |||
} | |||
for (i=0; i < XMSS_WOTS_LEN; i++) { | |||
setChainADRS(addr, i); | |||
gen_chain(pk+i*XMSS_N, sig+i*XMSS_N, basew[i], XMSS_WOTS_W-1-basew[i], pub_seed, addr); | |||
} | |||
for (i = 0; i < XMSS_WOTS_LEN2; i++) { | |||
basew[XMSS_WOTS_LEN1 + i] = csum_basew[i]; | |||
} | |||
for (i=0; i < XMSS_WOTS_LEN; i++) { | |||
set_chain_addr(addr, i); | |||
gen_chain(pk + i*XMSS_N, sig + i*XMSS_N, | |||
basew[i], XMSS_WOTS_W-1-basew[i], pub_seed, addr); | |||
} | |||
} |
@@ -16,18 +16,21 @@ Public domain. | |||
* | |||
* Places the computed public key at address pk. | |||
*/ | |||
void wots_pkgen(unsigned char *pk, const unsigned char *sk, const unsigned char *pub_seed, uint32_t addr[8]); | |||
void wots_pkgen(unsigned char *pk, const unsigned char *sk, | |||
const unsigned char *pub_seed, uint32_t addr[8]); | |||
/** | |||
* Takes a m-byte message and the 32-byte seed for the secret key to compute a signature that is placed at "sig". | |||
* | |||
*/ | |||
void wots_sign(unsigned char *sig, const unsigned char *msg, const unsigned char *sk, const unsigned char *pub_seed, uint32_t addr[8]); | |||
void wots_sign(unsigned char *sig, const unsigned char *msg, | |||
const unsigned char *sk, const unsigned char *pub_seed, | |||
uint32_t addr[8]); | |||
/** | |||
* Takes a WOTS signature, a m-byte message and computes a WOTS public key that it places at pk. | |||
* | |||
*/ | |||
void wots_pkFromSig(unsigned char *pk, const unsigned char *sig, const unsigned char *msg, const unsigned char *pub_seed, uint32_t addr[8]); | |||
void wots_pk_from_sig(unsigned char *pk, | |||
const unsigned char *sig, const unsigned char *msg, | |||
const unsigned char *pub_seed, uint32_t addr[8]); | |||
#endif |
@@ -1,4 +1,5 @@ | |||
#include <stdint.h> | |||
#include "params_runtime.h" | |||
#include "xmss_core.h" | |||
@@ -23,8 +24,8 @@ int xmss_keypair(unsigned char *pk, unsigned char *sk, const uint32_t oid) | |||
} | |||
int xmss_sign(unsigned char *sk, | |||
unsigned char *sm, unsigned long long *smlen, | |||
const unsigned char *m, unsigned long long mlen) | |||
unsigned char *sm, unsigned long long *smlen, | |||
const unsigned char *m, unsigned long long mlen) | |||
{ | |||
uint32_t oid = 0; | |||
unsigned int i; | |||
@@ -39,8 +40,8 @@ int xmss_sign(unsigned char *sk, | |||
} | |||
int xmss_sign_open(unsigned char *m, unsigned long long *mlen, | |||
const unsigned char *sm, unsigned long long smlen, | |||
const unsigned char *pk) | |||
const unsigned char *sm, unsigned long long smlen, | |||
const unsigned char *pk) | |||
{ | |||
uint32_t oid = 0; | |||
unsigned int i; | |||
@@ -69,8 +70,8 @@ int xmssmt_keypair(unsigned char *pk, unsigned char *sk, const uint32_t oid) | |||
} | |||
int xmssmt_sign(unsigned char *sk, | |||
unsigned char *sm, unsigned long long *smlen, | |||
const unsigned char *m, unsigned long long mlen) | |||
unsigned char *sm, unsigned long long *smlen, | |||
const unsigned char *m, unsigned long long mlen) | |||
{ | |||
uint32_t oid = 0; | |||
unsigned int i; | |||
@@ -85,8 +86,8 @@ int xmssmt_sign(unsigned char *sk, | |||
} | |||
int xmssmt_sign_open(unsigned char *m, unsigned long long *mlen, | |||
const unsigned char *sm, unsigned long long smlen, | |||
const unsigned char *pk) | |||
const unsigned char *sm, unsigned long long smlen, | |||
const unsigned char *pk) | |||
{ | |||
uint32_t oid = 0; | |||
unsigned int i; | |||
@@ -9,19 +9,25 @@ | |||
* Format pk: [oid || root || PUB_SEED] | |||
*/ | |||
int xmss_keypair(unsigned char *pk, unsigned char *sk, const uint32_t oid); | |||
/** | |||
* Signs a message. | |||
* Returns | |||
* 1. an array containing the signature followed by the message AND | |||
* 2. an updated secret key! | |||
*/ | |||
int xmss_sign(unsigned char *sk, unsigned char *sig_msg, unsigned long long *sig_msg_len, const unsigned char *msg, unsigned long long msglen); | |||
int xmss_sign(unsigned char *sk, | |||
unsigned char *sm, unsigned long long *smlen, | |||
const unsigned char *m, unsigned long long mlen); | |||
/** | |||
* Verifies a given message signature pair under a given public key. | |||
* | |||
* Note: msg and msglen are pure outputs which carry the message in case verification succeeds. The (input) message is assumed to be within sig_msg which has the form (sig||msg). | |||
*/ | |||
int xmss_sign_open(unsigned char *msg, unsigned long long *msglen, const unsigned char *sig_msg, unsigned long long sig_msg_len, const unsigned char *pk); | |||
int xmss_sign_open(unsigned char *m, unsigned long long *mlen, | |||
const unsigned char *sm, unsigned long long smlen, | |||
const unsigned char *pk); | |||
/* | |||
* Generates a XMSSMT key pair for a given parameter set. | |||
@@ -29,16 +35,21 @@ int xmss_sign_open(unsigned char *msg, unsigned long long *msglen, const unsigne | |||
* Format pk: [oid || root || PUB_SEED] | |||
*/ | |||
int xmssmt_keypair(unsigned char *pk, unsigned char *sk, const uint32_t oid); | |||
/** | |||
* Signs a message. | |||
* Returns | |||
* 1. an array containing the signature followed by the message AND | |||
* 2. an updated secret key! | |||
*/ | |||
int xmssmt_sign(unsigned char *sk, unsigned char *sig_msg, unsigned long long *sig_msg_len, const unsigned char *msg, unsigned long long msglen); | |||
int xmssmt_sign(unsigned char *sk, | |||
unsigned char *sm, unsigned long long *smlen, | |||
const unsigned char *m, unsigned long long mlen); | |||
/** | |||
* Verifies a given message signature pair under a given public key. | |||
*/ | |||
int xmssmt_sign_open(unsigned char *msg, unsigned long long *msglen, const unsigned char *sig_msg, unsigned long long sig_msg_len, const unsigned char *pk); | |||
int xmssmt_sign_open(unsigned char *m, unsigned long long *mlen, | |||
const unsigned char *sm, unsigned long long smlen, | |||
const unsigned char *pk); | |||
#endif | |||
@@ -5,38 +5,40 @@ Joost Rijneveld | |||
Public domain. | |||
*/ | |||
#include "xmss_commons.h" | |||
#include <stdlib.h> | |||
#include <string.h> | |||
#include <stdint.h> | |||
#include "wots.h" | |||
#include "hash.h" | |||
#include "hash_address.h" | |||
#include "params.h" | |||
#include "wots.h" | |||
#include "xmss_commons.h" | |||
void to_byte(unsigned char *out, unsigned long long in, uint32_t bytes) | |||
{ | |||
int32_t i; | |||
for (i = bytes-1; i >= 0; i--) { | |||
out[i] = in & 0xff; | |||
in = in >> 8; | |||
} | |||
int i; | |||
for (i = bytes-1; i >= 0; i--) { | |||
out[i] = in & 0xff; | |||
in = in >> 8; | |||
} | |||
} | |||
/** | |||
* Computes the leaf at a given address. First generates the WOTS key pair, then computes leaf using l_tree. As this happens position independent, we only require that addr encodes the right ltree-address. | |||
*/ | |||
void gen_leaf_wots(unsigned char *leaf, const unsigned char *sk_seed, const unsigned char *pub_seed, uint32_t ltree_addr[8], uint32_t ots_addr[8]) | |||
void gen_leaf_wots(unsigned char *leaf, | |||
const unsigned char *sk_seed, const unsigned char *pub_seed, | |||
uint32_t ltree_addr[8], uint32_t ots_addr[8]) | |||
{ | |||
unsigned char seed[XMSS_N]; | |||
unsigned char pk[XMSS_WOTS_KEYSIZE]; | |||
unsigned char seed[XMSS_N]; | |||
unsigned char pk[XMSS_WOTS_KEYSIZE]; | |||
get_seed(seed, sk_seed, ots_addr); | |||
wots_pkgen(pk, seed, pub_seed, ots_addr); | |||
get_seed(seed, sk_seed, ots_addr); | |||
wots_pkgen(pk, seed, pub_seed, ots_addr); | |||
l_tree(leaf, pk, pub_seed, ltree_addr); | |||
l_tree(leaf, pk, pub_seed, ltree_addr); | |||
} | |||
/** | |||
@@ -45,316 +47,260 @@ void gen_leaf_wots(unsigned char *leaf, const unsigned char *sk_seed, const unsi | |||
* | |||
* takes XMSS_N byte sk_seed and returns XMSS_N byte seed using 32 byte address addr. | |||
*/ | |||
void get_seed(unsigned char *seed, const unsigned char *sk_seed, uint32_t addr[8]) | |||
void get_seed(unsigned char *seed, | |||
const unsigned char *sk_seed, uint32_t addr[8]) | |||
{ | |||
unsigned char bytes[32]; | |||
// Make sure that chain addr, hash addr, and key bit are 0! | |||
setChainADRS(addr, 0); | |||
setHashADRS(addr, 0); | |||
setKeyAndMask(addr, 0); | |||
// Generate pseudorandom value | |||
addr_to_byte(bytes, addr); | |||
prf(seed, bytes, sk_seed, XMSS_N); | |||
unsigned char bytes[32]; | |||
// Make sure that chain addr, hash addr, and key bit are 0! | |||
set_chain_addr(addr, 0); | |||
set_hash_addr(addr, 0); | |||
set_key_and_mask(addr, 0); | |||
// Generate pseudorandom value | |||
addr_to_byte(bytes, addr); | |||
prf(seed, bytes, sk_seed, XMSS_N); | |||
} | |||
/** | |||
* Computes a leaf from a WOTS public key using an L-tree. | |||
*/ | |||
void l_tree(unsigned char *leaf, unsigned char *wots_pk, const unsigned char *pub_seed, uint32_t addr[8]) | |||
void l_tree(unsigned char *leaf, unsigned char *wots_pk, | |||
const unsigned char *pub_seed, uint32_t addr[8]) | |||
{ | |||
unsigned int l = XMSS_WOTS_LEN; | |||
uint32_t i = 0; | |||
uint32_t height = 0; | |||
uint32_t bound; | |||
//ADRS.setTreeHeight(0); | |||
setTreeHeight(addr, height); | |||
while (l > 1) { | |||
bound = l >> 1; //floor(l / 2); | |||
for (i = 0; i < bound; i++) { | |||
//ADRS.setTreeIndex(i); | |||
setTreeIndex(addr, i); | |||
//wots_pk[i] = RAND_HASH(pk[2i], pk[2i + 1], SEED, ADRS); | |||
hash_h(wots_pk+i*XMSS_N, wots_pk+i*2*XMSS_N, pub_seed, addr); | |||
} | |||
//if ( l % 2 == 1 ) { | |||
if (l & 1) { | |||
//pk[floor(l / 2) + 1] = pk[l]; | |||
memcpy(wots_pk+(l>>1)*XMSS_N, wots_pk+(l-1)*XMSS_N, XMSS_N); | |||
//l = ceil(l / 2); | |||
l=(l>>1)+1; | |||
} | |||
else { | |||
//l = ceil(l / 2); | |||
l=(l>>1); | |||
} | |||
//ADRS.setTreeHeight(ADRS.getTreeHeight() + 1); | |||
height++; | |||
setTreeHeight(addr, height); | |||
} | |||
//return pk[0]; | |||
memcpy(leaf, wots_pk, XMSS_N); | |||
unsigned int l = XMSS_WOTS_LEN; | |||
uint32_t i = 0; | |||
uint32_t height = 0; | |||
uint32_t bound; | |||
set_tree_height(addr, height); | |||
while (l > 1) { | |||
bound = l >> 1; | |||
for (i = 0; i < bound; i++) { | |||
set_tree_index(addr, i); | |||
hash_h(wots_pk + i*XMSS_N, wots_pk + i*2*XMSS_N, pub_seed, addr); | |||
} | |||
if (l & 1) { | |||
memcpy(wots_pk + (l >> 1)*XMSS_N, wots_pk + (l - 1)*XMSS_N, XMSS_N); | |||
l = (l >> 1) + 1; | |||
} | |||
else { | |||
l = l >> 1; | |||
} | |||
height++; | |||
set_tree_height(addr, height); | |||
} | |||
memcpy(leaf, wots_pk, XMSS_N); | |||
} | |||
/** | |||
* Computes a root node given a leaf and an authapth | |||
*/ | |||
static void validate_authpath(unsigned char *root, const unsigned char *leaf, unsigned long leafidx, const unsigned char *authpath, const unsigned char *pub_seed, uint32_t addr[8]) | |||
static void validate_authpath(unsigned char *root, | |||
const unsigned char *leaf, unsigned long leafidx, | |||
const unsigned char *authpath, | |||
const unsigned char *pub_seed, uint32_t addr[8]) | |||
{ | |||
uint32_t i, j; | |||
unsigned char buffer[2*XMSS_N]; | |||
// If leafidx is odd (last bit = 1), current path element is a right child and authpath has to go to the left. | |||
// Otherwise, it is the other way around | |||
if (leafidx & 1) { | |||
for (j = 0; j < XMSS_N; j++) | |||
buffer[XMSS_N+j] = leaf[j]; | |||
for (j = 0; j < XMSS_N; j++) | |||
buffer[j] = authpath[j]; | |||
} | |||
else { | |||
for (j = 0; j < XMSS_N; j++) | |||
buffer[j] = leaf[j]; | |||
for (j = 0; j < XMSS_N; j++) | |||
buffer[XMSS_N+j] = authpath[j]; | |||
} | |||
authpath += XMSS_N; | |||
for (i = 0; i < XMSS_TREEHEIGHT-1; i++) { | |||
setTreeHeight(addr, i); | |||
leafidx >>= 1; | |||
setTreeIndex(addr, leafidx); | |||
if (leafidx&1) { | |||
hash_h(buffer+XMSS_N, buffer, pub_seed, addr); | |||
for (j = 0; j < XMSS_N; j++) | |||
buffer[j] = authpath[j]; | |||
uint32_t i, j; | |||
unsigned char buffer[2*XMSS_N]; | |||
// If leafidx is odd (last bit = 1), current path element is a right child and authpath has to go to the left. | |||
// Otherwise, it is the other way around | |||
if (leafidx & 1) { | |||
for (j = 0; j < XMSS_N; j++) { | |||
buffer[XMSS_N + j] = leaf[j]; | |||
buffer[j] = authpath[j]; | |||
} | |||
} | |||
else { | |||
hash_h(buffer, buffer, pub_seed, addr); | |||
for (j = 0; j < XMSS_N; j++) | |||
buffer[j+XMSS_N] = authpath[j]; | |||
for (j = 0; j < XMSS_N; j++) { | |||
buffer[j] = leaf[j]; | |||
buffer[XMSS_N + j] = authpath[j]; | |||
} | |||
} | |||
authpath += XMSS_N; | |||
} | |||
setTreeHeight(addr, (XMSS_TREEHEIGHT-1)); | |||
leafidx >>= 1; | |||
setTreeIndex(addr, leafidx); | |||
hash_h(root, buffer, pub_seed, addr); | |||
for (i = 0; i < XMSS_TREEHEIGHT-1; i++) { | |||
set_tree_height(addr, i); | |||
leafidx >>= 1; | |||
set_tree_index(addr, leafidx); | |||
if (leafidx & 1) { | |||
hash_h(buffer + XMSS_N, buffer, pub_seed, addr); | |||
for (j = 0; j < XMSS_N; j++) { | |||
buffer[j] = authpath[j]; | |||
} | |||
} | |||
else { | |||
hash_h(buffer, buffer, pub_seed, addr); | |||
for (j = 0; j < XMSS_N; j++) { | |||
buffer[j + XMSS_N] = authpath[j]; | |||
} | |||
} | |||
authpath += XMSS_N; | |||
} | |||
set_tree_height(addr, XMSS_TREEHEIGHT - 1); | |||
leafidx >>= 1; | |||
set_tree_index(addr, leafidx); | |||
hash_h(root, buffer, pub_seed, addr); | |||
} | |||
/** | |||
* Verifies a given message signature pair under a given public key. | |||
*/ | |||
int xmss_core_sign_open(unsigned char *m, unsigned long long *mlen, const unsigned char *sm, unsigned long long smlen, const unsigned char *pk) | |||
int xmss_core_sign_open(unsigned char *m, unsigned long long *mlen, | |||
const unsigned char *sm, unsigned long long smlen, | |||
const unsigned char *pk) | |||
{ | |||
unsigned long long i, m_len; | |||
unsigned long idx=0; | |||
unsigned char wots_pk[XMSS_WOTS_KEYSIZE]; | |||
unsigned char pkhash[XMSS_N]; | |||
unsigned char root[XMSS_N]; | |||
unsigned char msg_h[XMSS_N]; | |||
unsigned char hash_key[3*XMSS_N]; | |||
unsigned char pub_seed[XMSS_N]; | |||
memcpy(pub_seed, pk+XMSS_N, XMSS_N); | |||
// Init addresses | |||
uint32_t ots_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; | |||
uint32_t ltree_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; | |||
uint32_t node_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; | |||
setType(ots_addr, 0); | |||
setType(ltree_addr, 1); | |||
setType(node_addr, 2); | |||
// Extract index | |||
idx = ((unsigned long)sm[0] << 24) | ((unsigned long)sm[1] << 16) | ((unsigned long)sm[2] << 8) | sm[3]; | |||
// Generate hash key (R || root || idx) | |||
memcpy(hash_key, sm+4,XMSS_N); | |||
memcpy(hash_key+XMSS_N, pk, XMSS_N); | |||
to_byte(hash_key+2*XMSS_N, idx, XMSS_N); | |||
sm += (XMSS_N+4); | |||
smlen -= (XMSS_N+4); | |||
// hash message | |||
unsigned long long tmp_sig_len = XMSS_WOTS_KEYSIZE+XMSS_TREEHEIGHT*XMSS_N; | |||
m_len = smlen - tmp_sig_len; | |||
h_msg(msg_h, sm + tmp_sig_len, m_len, hash_key, 3*XMSS_N); | |||
//----------------------- | |||
// Verify signature | |||
//----------------------- | |||
// Prepare Address | |||
setOTSADRS(ots_addr, idx); | |||
// Check WOTS signature | |||
wots_pkFromSig(wots_pk, sm, msg_h, pub_seed, ots_addr); | |||
sm += XMSS_WOTS_KEYSIZE; | |||
smlen -= XMSS_WOTS_KEYSIZE; | |||
unsigned long long i; | |||
unsigned long idx = 0; | |||
unsigned char wots_pk[XMSS_WOTS_KEYSIZE]; | |||
unsigned char pkhash[XMSS_N]; | |||
unsigned char root[XMSS_N]; | |||
unsigned char msg_h[XMSS_N]; | |||
unsigned char hash_key[3*XMSS_N]; | |||
unsigned char pub_seed[XMSS_N]; | |||
memcpy(pub_seed, pk + XMSS_N, XMSS_N); | |||
// Init addresses | |||
uint32_t ots_addr[8] = {0}; | |||
uint32_t ltree_addr[8] = {0}; | |||
uint32_t node_addr[8] = {0}; | |||
set_type(ots_addr, 0); | |||
set_type(ltree_addr, 1); | |||
set_type(node_addr, 2); | |||
*mlen = smlen - XMSS_BYTES; | |||
// Extract index | |||
for (i = 0; i < XMSS_INDEX_LEN; i++) { | |||
idx |= ((unsigned long long)sm[i]) << (8*(XMSS_INDEX_LEN - 1 - i)); | |||
} | |||
// Compute Ltree | |||
setLtreeADRS(ltree_addr, idx); | |||
l_tree(pkhash, wots_pk, pub_seed, ltree_addr); | |||
// Generate hash key (R || root || idx) | |||
memcpy(hash_key, sm + XMSS_INDEX_LEN, XMSS_N); | |||
memcpy(hash_key + XMSS_N, pk, XMSS_N); | |||
to_byte(hash_key + 2*XMSS_N, idx, XMSS_N); | |||
// Compute root | |||
validate_authpath(root, pkhash, idx, sm, pub_seed, node_addr); | |||
// hash message | |||
h_msg(msg_h, sm + XMSS_BYTES, *mlen, hash_key, 3*XMSS_N); | |||
sm += XMSS_INDEX_LEN + XMSS_N; | |||
sm += XMSS_TREEHEIGHT*XMSS_N; | |||
smlen -= XMSS_TREEHEIGHT*XMSS_N; | |||
// Prepare Address | |||
set_ots_addr(ots_addr, idx); | |||
// Check WOTS signature | |||
wots_pk_from_sig(wots_pk, sm, msg_h, pub_seed, ots_addr); | |||
sm += XMSS_WOTS_KEYSIZE; | |||
for (i = 0; i < XMSS_N; i++) | |||
if (root[i] != pk[i]) | |||
goto fail; | |||
// Compute Ltree | |||
set_ltree_addr(ltree_addr, idx); | |||
l_tree(pkhash, wots_pk, pub_seed, ltree_addr); | |||
*mlen = smlen; | |||
for (i = 0; i < *mlen; i++) | |||
m[i] = sm[i]; | |||
// Compute root | |||
validate_authpath(root, pkhash, idx, sm, pub_seed, node_addr); | |||
sm += XMSS_TREEHEIGHT*XMSS_N; | |||
return 0; | |||
for (i = 0; i < XMSS_N; i++) { | |||
if (root[i] != pk[i]) { | |||
for (i = 0; i < *mlen; i++) { | |||
m[i] = 0; | |||
} | |||
*mlen = -1; | |||
return -1; | |||
} | |||
} | |||
for (i = 0; i < *mlen; i++) { | |||
m[i] = sm[i]; | |||
} | |||
fail: | |||
*mlen = smlen; | |||
for (i = 0; i < *mlen; i++) | |||
m[i] = 0; | |||
*mlen = -1; | |||
return -1; | |||
return 0; | |||
} | |||
/** | |||
* Verifies a given message signature pair under a given public key. | |||
*/ | |||
int xmssmt_core_sign_open(unsigned char *m, unsigned long long *mlen, const unsigned char *sm, unsigned long long smlen, const unsigned char *pk) | |||
int xmssmt_core_sign_open(unsigned char *m, unsigned long long *mlen, | |||
const unsigned char *sm, unsigned long long smlen, | |||
const unsigned char *pk) | |||
{ | |||
uint64_t idx_tree; | |||
uint32_t idx_leaf; | |||
unsigned long long i, m_len; | |||
unsigned long long idx=0; | |||
unsigned char wots_pk[XMSS_WOTS_KEYSIZE]; | |||
unsigned char pkhash[XMSS_N]; | |||
unsigned char root[XMSS_N]; | |||
unsigned char msg_h[XMSS_N]; | |||
unsigned char hash_key[3*XMSS_N]; | |||
unsigned char pub_seed[XMSS_N]; | |||
memcpy(pub_seed, pk+XMSS_N, XMSS_N); | |||
// Init addresses | |||
uint32_t ots_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; | |||
uint32_t ltree_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; | |||
uint32_t node_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; | |||
// Extract index | |||
for (i = 0; i < XMSS_INDEX_LEN; i++) { | |||
idx |= ((unsigned long long)sm[i]) << (8*(XMSS_INDEX_LEN - 1 - i)); | |||
} | |||
sm += XMSS_INDEX_LEN; | |||
smlen -= XMSS_INDEX_LEN; | |||
// Generate hash key (R || root || idx) | |||
memcpy(hash_key, sm,XMSS_N); | |||
memcpy(hash_key+XMSS_N, pk, XMSS_N); | |||
to_byte(hash_key+2*XMSS_N, idx, XMSS_N); | |||
sm += XMSS_N; | |||
smlen -= XMSS_N; | |||
// hash message | |||
unsigned long long tmp_sig_len = (XMSS_D * XMSS_WOTS_KEYSIZE) + (XMSS_FULLHEIGHT * XMSS_N); | |||
m_len = smlen - tmp_sig_len; | |||
h_msg(msg_h, sm + tmp_sig_len, m_len, hash_key, 3*XMSS_N); | |||
//----------------------- | |||
// Verify signature | |||
//----------------------- | |||
// Prepare Address | |||
idx_tree = idx >> XMSS_TREEHEIGHT; | |||
idx_leaf = (idx & ((1 << XMSS_TREEHEIGHT)-1)); | |||
setLayerADRS(ots_addr, 0); | |||
setTreeADRS(ots_addr, idx_tree); | |||
setType(ots_addr, 0); | |||
memcpy(ltree_addr, ots_addr, 12); | |||
setType(ltree_addr, 1); | |||
memcpy(node_addr, ltree_addr, 12); | |||
setType(node_addr, 2); | |||
setOTSADRS(ots_addr, idx_leaf); | |||
// Check WOTS signature | |||
wots_pkFromSig(wots_pk, sm, msg_h, pub_seed, ots_addr); | |||
sm += XMSS_WOTS_KEYSIZE; | |||
smlen -= XMSS_WOTS_KEYSIZE; | |||
// Compute Ltree | |||
setLtreeADRS(ltree_addr, idx_leaf); | |||
l_tree(pkhash, wots_pk, pub_seed, ltree_addr); | |||
// Compute root | |||
validate_authpath(root, pkhash, idx_leaf, sm, pub_seed, node_addr); | |||
sm += XMSS_TREEHEIGHT*XMSS_N; | |||
smlen -= XMSS_TREEHEIGHT*XMSS_N; | |||
for (i = 1; i < XMSS_D; i++) { | |||
// Prepare Address | |||
idx_leaf = (idx_tree & ((1 << XMSS_TREEHEIGHT)-1)); | |||
idx_tree = idx_tree >> XMSS_TREEHEIGHT; | |||
setLayerADRS(ots_addr, i); | |||
setTreeADRS(ots_addr, idx_tree); | |||
setType(ots_addr, 0); | |||
memcpy(ltree_addr, ots_addr, 12); | |||
setType(ltree_addr, 1); | |||
memcpy(node_addr, ltree_addr, 12); | |||
setType(node_addr, 2); | |||
uint32_t idx_leaf; | |||
unsigned long long i; | |||
unsigned long long idx = 0; | |||
unsigned char wots_pk[XMSS_WOTS_KEYSIZE]; | |||
unsigned char pkhash[XMSS_N]; | |||
unsigned char root[XMSS_N]; | |||
unsigned char *msg_h = root; | |||
unsigned char hash_key[3*XMSS_N]; | |||
const unsigned char *pub_seed = pk + XMSS_N; | |||
// Init addresses | |||
uint32_t ots_addr[8] = {0}; | |||
uint32_t ltree_addr[8] = {0}; | |||
uint32_t node_addr[8] = {0}; | |||
set_type(ots_addr, 0); | |||
set_type(ltree_addr, 1); | |||
set_type(node_addr, 2); | |||
*mlen = smlen - XMSS_BYTES; | |||
// Extract index | |||
for (i = 0; i < XMSS_INDEX_LEN; i++) { | |||
idx |= ((unsigned long long)sm[i]) << (8*(XMSS_INDEX_LEN - 1 - i)); | |||
} | |||
setOTSADRS(ots_addr, idx_leaf); | |||
// Generate hash key (R || root || idx) | |||
memcpy(hash_key, sm + XMSS_INDEX_LEN, XMSS_N); | |||
memcpy(hash_key + XMSS_N, pk, XMSS_N); | |||
to_byte(hash_key + 2*XMSS_N, idx, XMSS_N); | |||
// Check WOTS signature | |||
wots_pkFromSig(wots_pk, sm, root, pub_seed, ots_addr); | |||
// hash message | |||
h_msg(msg_h, sm + XMSS_BYTES, *mlen, hash_key, 3*XMSS_N); | |||
sm += XMSS_INDEX_LEN + XMSS_N; | |||
sm += XMSS_WOTS_KEYSIZE; | |||
smlen -= XMSS_WOTS_KEYSIZE; | |||
for (i = 0; i < XMSS_D; i++) { | |||
// Prepare Address | |||
idx_leaf = (idx & ((1 << XMSS_TREEHEIGHT)-1)); | |||
idx = idx >> XMSS_TREEHEIGHT; | |||
// Compute Ltree | |||
setLtreeADRS(ltree_addr, idx_leaf); | |||
l_tree(pkhash, wots_pk, pub_seed, ltree_addr); | |||
set_layer_addr(ots_addr, i); | |||
set_layer_addr(ltree_addr, i); | |||
set_layer_addr(node_addr, i); | |||
// Compute root | |||
validate_authpath(root, pkhash, idx_leaf, sm, pub_seed, node_addr); | |||
set_tree_addr(ltree_addr, idx); | |||
set_tree_addr(ots_addr, idx); | |||
set_tree_addr(node_addr, idx); | |||
sm += XMSS_TREEHEIGHT*XMSS_N; | |||
smlen -= XMSS_TREEHEIGHT*XMSS_N; | |||
set_ots_addr(ots_addr, idx_leaf); | |||
} | |||
// Check WOTS signature | |||
wots_pk_from_sig(wots_pk, sm, root, pub_seed, ots_addr); | |||
sm += XMSS_WOTS_KEYSIZE; | |||
for (i = 0; i < XMSS_N; i++) | |||
if (root[i] != pk[i]) | |||
goto fail; | |||
// Compute Ltree | |||
set_ltree_addr(ltree_addr, idx_leaf); | |||
l_tree(pkhash, wots_pk, pub_seed, ltree_addr); | |||
*mlen = smlen; | |||
for (i = 0; i < *mlen; i++) | |||
m[i] = sm[i]; | |||
// Compute root | |||
validate_authpath(root, pkhash, idx_leaf, sm, pub_seed, node_addr); | |||
sm += XMSS_TREEHEIGHT*XMSS_N; | |||
} | |||
return 0; | |||
for (i = 0; i < XMSS_N; i++) { | |||
if (root[i] != pk[i]) { | |||
for (i = 0; i < *mlen; i++) { | |||
m[i] = 0; | |||
} | |||
*mlen = -1; | |||
return -1; | |||
} | |||
} | |||
for (i = 0; i < *mlen; i++) { | |||
m[i] = sm[i]; | |||
} | |||
fail: | |||
*mlen = smlen; | |||
for (i = 0; i < *mlen; i++) | |||
m[i] = 0; | |||
*mlen = -1; | |||
return -1; | |||
return 0; | |||
} |
@@ -11,10 +11,24 @@ Public domain. | |||
#include <stdint.h> | |||
void to_byte(unsigned char *output, unsigned long long in, uint32_t bytes); | |||
void hexdump(const unsigned char *a, size_t len); | |||
void gen_leaf_wots(unsigned char *leaf, const unsigned char *sk_seed, const unsigned char *pub_seed, uint32_t ltree_addr[8], uint32_t ots_addr[8]); | |||
void get_seed(unsigned char *seed, const unsigned char *sk_seed, uint32_t addr[8]); | |||
void l_tree(unsigned char *leaf, unsigned char *wots_pk, const unsigned char *pub_seed, uint32_t addr[8]); | |||
int xmss_core_sign_open(unsigned char *msg, unsigned long long *msglen, const unsigned char *sig_msg, unsigned long long sig_msg_len, const unsigned char *pk); | |||
int xmssmt_core_sign_open(unsigned char *msg, unsigned long long *msglen, const unsigned char *sig_msg, unsigned long long sig_msg_len, const unsigned char *pk); | |||
void gen_leaf_wots(unsigned char *leaf, | |||
const unsigned char *sk_seed, const unsigned char *pub_seed, | |||
uint32_t ltree_addr[8], uint32_t ots_addr[8]); | |||
void get_seed(unsigned char *seed, | |||
const unsigned char *sk_seed, uint32_t addr[8]); | |||
void l_tree(unsigned char *leaf, unsigned char *wots_pk, | |||
const unsigned char *pub_seed, uint32_t addr[8]); | |||
int xmss_core_sign_open(unsigned char *m, unsigned long long *mlen, | |||
const unsigned char *sm, unsigned long long smlen, | |||
const unsigned char *pk); | |||
int xmssmt_core_sign_open(unsigned char *m, unsigned long long *mlen, | |||
const unsigned char *sm, unsigned long long smlen, | |||
const unsigned char *pk); | |||
#endif |
@@ -5,17 +5,17 @@ Joost Rijneveld | |||
Public domain. | |||
*/ | |||
#include "xmss_core.h" | |||
#include <stdlib.h> | |||
#include <string.h> | |||
#include <stdint.h> | |||
#include "randombytes.h" | |||
#include "wots.h" | |||
#include "hash.h" | |||
#include "xmss_commons.h" | |||
#include "hash_address.h" | |||
#include "params.h" | |||
#include "randombytes.h" | |||
#include "wots.h" | |||
#include "xmss_commons.h" | |||
#include "xmss_core.h" | |||
/** | |||
* Merkle's TreeHash algorithm. The address only needs to initialize the first 78 bits of addr. Everything else will be set by treehash. | |||
@@ -24,43 +24,44 @@ Public domain. | |||
*/ | |||
static void treehash(unsigned char *node, uint32_t index, const unsigned char *sk_seed, const unsigned char *pub_seed, const uint32_t addr[8]) | |||
{ | |||
uint32_t idx = index; | |||
// use three different addresses because at this point we use all three formats in parallel | |||
uint32_t ots_addr[8]; | |||
uint32_t ltree_addr[8]; | |||
uint32_t node_addr[8]; | |||
// only copy layer and tree address parts | |||
memcpy(ots_addr, addr, 12); | |||
// type = ots | |||
setType(ots_addr, 0); | |||
memcpy(ltree_addr, addr, 12); | |||
setType(ltree_addr, 1); | |||
memcpy(node_addr, addr, 12); | |||
setType(node_addr, 2); | |||
uint32_t lastnode, i; | |||
unsigned char stack[(XMSS_TREEHEIGHT+1)*XMSS_N]; | |||
uint16_t stacklevels[XMSS_TREEHEIGHT+1]; | |||
unsigned int stackoffset=0; | |||
lastnode = idx+(1 << XMSS_TREEHEIGHT); | |||
for (; idx < lastnode; idx++) { | |||
setLtreeADRS(ltree_addr, idx); | |||
setOTSADRS(ots_addr, idx); | |||
gen_leaf_wots(stack+stackoffset*XMSS_N, sk_seed, pub_seed, ltree_addr, ots_addr); | |||
stacklevels[stackoffset] = 0; | |||
stackoffset++; | |||
while (stackoffset>1 && stacklevels[stackoffset-1] == stacklevels[stackoffset-2]) { | |||
setTreeHeight(node_addr, stacklevels[stackoffset-1]); | |||
setTreeIndex(node_addr, (idx >> (stacklevels[stackoffset-1]+1))); | |||
hash_h(stack+(stackoffset-2)*XMSS_N, stack+(stackoffset-2)*XMSS_N, pub_seed, node_addr); | |||
stacklevels[stackoffset-2]++; | |||
stackoffset--; | |||
uint32_t idx = index; | |||
// use three different addresses because at this point we use all three formats in parallel | |||
uint32_t ots_addr[8]; | |||
uint32_t ltree_addr[8]; | |||
uint32_t node_addr[8]; | |||
// only copy layer and tree address parts | |||
memcpy(ots_addr, addr, 12); | |||
// type = ots | |||
set_type(ots_addr, 0); | |||
memcpy(ltree_addr, addr, 12); | |||
set_type(ltree_addr, 1); | |||
memcpy(node_addr, addr, 12); | |||
set_type(node_addr, 2); | |||
uint32_t lastnode, i; | |||
unsigned char stack[(XMSS_TREEHEIGHT+1)*XMSS_N]; | |||
uint16_t stacklevels[XMSS_TREEHEIGHT+1]; | |||
unsigned int stackoffset=0; | |||
lastnode = idx+(1 << XMSS_TREEHEIGHT); | |||
for (; idx < lastnode; idx++) { | |||
set_ltree_addr(ltree_addr, idx); | |||
set_ots_addr(ots_addr, idx); | |||
gen_leaf_wots(stack+stackoffset*XMSS_N, sk_seed, pub_seed, ltree_addr, ots_addr); | |||
stacklevels[stackoffset] = 0; | |||
stackoffset++; | |||
while (stackoffset>1 && stacklevels[stackoffset-1] == stacklevels[stackoffset-2]) { | |||
set_tree_height(node_addr, stacklevels[stackoffset-1]); | |||
set_tree_index(node_addr, (idx >> (stacklevels[stackoffset-1]+1))); | |||
hash_h(stack+(stackoffset-2)*XMSS_N, stack+(stackoffset-2)*XMSS_N, pub_seed, node_addr); | |||
stacklevels[stackoffset-2]++; | |||
stackoffset--; | |||
} | |||
} | |||
for (i = 0; i < XMSS_N; i++) { | |||
node[i] = stack[i]; | |||
} | |||
} | |||
for (i = 0; i < XMSS_N; i++) | |||
node[i] = stack[i]; | |||
} | |||
/** | |||
@@ -70,48 +71,49 @@ static void treehash(unsigned char *node, uint32_t index, const unsigned char *s | |||
*/ | |||
static void compute_authpath_wots(unsigned char *root, unsigned char *authpath, unsigned long leaf_idx, const unsigned char *sk_seed, unsigned char *pub_seed, uint32_t addr[8]) | |||
{ | |||
uint32_t i, j, level; | |||
unsigned char tree[2*(1<<XMSS_TREEHEIGHT)*XMSS_N]; | |||
uint32_t ots_addr[8]; | |||
uint32_t ltree_addr[8]; | |||
uint32_t node_addr[8]; | |||
memcpy(ots_addr, addr, 12); | |||
setType(ots_addr, 0); | |||
memcpy(ltree_addr, addr, 12); | |||
setType(ltree_addr, 1); | |||
memcpy(node_addr, addr, 12); | |||
setType(node_addr, 2); | |||
// Compute all leaves | |||
for (i = 0; i < (1U << XMSS_TREEHEIGHT); i++) { | |||
setLtreeADRS(ltree_addr, i); | |||
setOTSADRS(ots_addr, i); | |||
gen_leaf_wots(tree+((1<<XMSS_TREEHEIGHT)*XMSS_N + i*XMSS_N), sk_seed, pub_seed, ltree_addr, ots_addr); | |||
} | |||
level = 0; | |||
// Compute tree: | |||
// Outer loop: For each inner layer | |||
for (i = (1<<XMSS_TREEHEIGHT); i > 1; i>>=1) { | |||
setTreeHeight(node_addr, level); | |||
// Inner loop: for each pair of sibling nodes | |||
for (j = 0; j < i; j+=2) { | |||
setTreeIndex(node_addr, j>>1); | |||
hash_h(tree + (i>>1)*XMSS_N + (j>>1) * XMSS_N, tree + i*XMSS_N + j*XMSS_N, pub_seed, node_addr); | |||
uint32_t i, j, level; | |||
unsigned char tree[2*(1<<XMSS_TREEHEIGHT)*XMSS_N]; | |||
uint32_t ots_addr[8]; | |||
uint32_t ltree_addr[8]; | |||
uint32_t node_addr[8]; | |||
memcpy(ots_addr, addr, 12); | |||
set_type(ots_addr, 0); | |||
memcpy(ltree_addr, addr, 12); | |||
set_type(ltree_addr, 1); | |||
memcpy(node_addr, addr, 12); | |||
set_type(node_addr, 2); | |||
// Compute all leaves | |||
for (i = 0; i < (1U << XMSS_TREEHEIGHT); i++) { | |||
set_ltree_addr(ltree_addr, i); | |||
set_ots_addr(ots_addr, i); | |||
gen_leaf_wots(tree+((1<<XMSS_TREEHEIGHT)*XMSS_N + i*XMSS_N), sk_seed, pub_seed, ltree_addr, ots_addr); | |||
} | |||
level++; | |||
} | |||
// copy authpath | |||
for (i = 0; i < XMSS_TREEHEIGHT; i++) | |||
memcpy(authpath + i*XMSS_N, tree + ((1<<XMSS_TREEHEIGHT)>>i)*XMSS_N + ((leaf_idx >> i) ^ 1) * XMSS_N, XMSS_N); | |||
// copy root | |||
memcpy(root, tree+XMSS_N, XMSS_N); | |||
level = 0; | |||
// Compute tree: | |||
// Outer loop: For each inner layer | |||
for (i = (1<<XMSS_TREEHEIGHT); i > 1; i>>=1) { | |||
set_tree_height(node_addr, level); | |||
// Inner loop: for each pair of sibling nodes | |||
for (j = 0; j < i; j+=2) { | |||
set_tree_index(node_addr, j>>1); | |||
hash_h(tree + (i>>1)*XMSS_N + (j>>1) * XMSS_N, tree + i*XMSS_N + j*XMSS_N, pub_seed, node_addr); | |||
} | |||
level++; | |||
} | |||
// copy authpath | |||
for (i = 0; i < XMSS_TREEHEIGHT; i++) { | |||
memcpy(authpath + i*XMSS_N, tree + ((1<<XMSS_TREEHEIGHT)>>i)*XMSS_N + ((leaf_idx >> i) ^ 1) * XMSS_N, XMSS_N); | |||
} | |||
// copy root | |||
memcpy(root, tree+XMSS_N, XMSS_N); | |||
} | |||
@@ -122,22 +124,22 @@ static void compute_authpath_wots(unsigned char *root, unsigned char *authpath, | |||
*/ | |||
int xmss_core_keypair(unsigned char *pk, unsigned char *sk) | |||
{ | |||
// Set idx = 0 | |||
sk[0] = 0; | |||
sk[1] = 0; | |||
sk[2] = 0; | |||
sk[3] = 0; | |||
// Init SK_SEED (XMSS_N byte), SK_PRF (XMSS_N byte), and PUB_SEED (XMSS_N byte) | |||
randombytes(sk+4, 3*XMSS_N); | |||
// Copy PUB_SEED to public key | |||
memcpy(pk+XMSS_N, sk+4+2*XMSS_N, XMSS_N); | |||
uint32_t addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; | |||
// Compute root | |||
treehash(pk, 0, sk+4, sk+4+2*XMSS_N, addr); | |||
// copy root to sk | |||
memcpy(sk+4+3*XMSS_N, pk, XMSS_N); | |||
return 0; | |||
// Set idx = 0 | |||
sk[0] = 0; | |||
sk[1] = 0; | |||
sk[2] = 0; | |||
sk[3] = 0; | |||
// Init SK_SEED (XMSS_N byte), SK_PRF (XMSS_N byte), and PUB_SEED (XMSS_N byte) | |||
randombytes(sk+4, 3*XMSS_N); | |||
// Copy PUB_SEED to public key | |||
memcpy(pk+XMSS_N, sk+4+2*XMSS_N, XMSS_N); | |||
uint32_t addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; | |||
// Compute root | |||
treehash(pk, 0, sk+4, sk+4+2*XMSS_N, addr); | |||
// copy root to sk | |||
memcpy(sk+4+3*XMSS_N, pk, XMSS_N); | |||
return 0; | |||
} | |||
/** | |||
@@ -149,96 +151,96 @@ int xmss_core_keypair(unsigned char *pk, unsigned char *sk) | |||
*/ | |||
int xmss_core_sign(unsigned char *sk, unsigned char *sm, unsigned long long *smlen, const unsigned char *m, unsigned long long mlen) | |||
{ | |||
uint16_t i = 0; | |||
// Extract SK | |||
uint32_t idx = ((unsigned long)sk[0] << 24) | ((unsigned long)sk[1] << 16) | ((unsigned long)sk[2] << 8) | sk[3]; | |||
unsigned char sk_seed[XMSS_N]; | |||
unsigned char sk_prf[XMSS_N]; | |||
unsigned char pub_seed[XMSS_N]; | |||
unsigned char hash_key[3*XMSS_N]; | |||
// index as 32 bytes string | |||
unsigned char idx_bytes_32[32]; | |||
to_byte(idx_bytes_32, idx, 32); | |||
memcpy(sk_seed, sk+4, XMSS_N); | |||
memcpy(sk_prf, sk+4+XMSS_N, XMSS_N); | |||
memcpy(pub_seed, sk+4+2*XMSS_N, XMSS_N); | |||
// Update SK | |||
sk[0] = ((idx + 1) >> 24) & 255; | |||
sk[1] = ((idx + 1) >> 16) & 255; | |||
sk[2] = ((idx + 1) >> 8) & 255; | |||
sk[3] = (idx + 1) & 255; | |||
// -- Secret key for this non-forward-secure version is now updated. | |||
// -- A productive implementation should use a file handle instead and write the updated secret key at this point! | |||
// Init working params | |||
unsigned char R[XMSS_N]; | |||
unsigned char msg_h[XMSS_N]; | |||
unsigned char root[XMSS_N]; | |||
unsigned char ots_seed[XMSS_N]; | |||
uint32_t ots_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; | |||
// --------------------------------- | |||
// Message Hashing | |||
// --------------------------------- | |||
// Message Hash: | |||
// First compute pseudorandom value | |||
prf(R, idx_bytes_32, sk_prf, XMSS_N); | |||
// Generate hash key (R || root || idx) | |||
memcpy(hash_key, R, XMSS_N); | |||
memcpy(hash_key+XMSS_N, sk+4+3*XMSS_N, XMSS_N); | |||
to_byte(hash_key+2*XMSS_N, idx, XMSS_N); | |||
// Then use it for message digest | |||
h_msg(msg_h, m, mlen, hash_key, 3*XMSS_N); | |||
// Start collecting signature | |||
*smlen = 0; | |||
// Copy index to signature | |||
sm[0] = (idx >> 24) & 255; | |||
sm[1] = (idx >> 16) & 255; | |||
sm[2] = (idx >> 8) & 255; | |||
sm[3] = idx & 255; | |||
sm += 4; | |||
*smlen += 4; | |||
// Copy R to signature | |||
for (i = 0; i < XMSS_N; i++) | |||
uint16_t i = 0; | |||
// Extract SK | |||
uint32_t idx = ((unsigned long)sk[0] << 24) | ((unsigned long)sk[1] << 16) | ((unsigned long)sk[2] << 8) | sk[3]; | |||
unsigned char sk_seed[XMSS_N]; | |||
unsigned char sk_prf[XMSS_N]; | |||
unsigned char pub_seed[XMSS_N]; | |||
unsigned char hash_key[3*XMSS_N]; | |||
// index as 32 bytes string | |||
unsigned char idx_bytes_32[32]; | |||
to_byte(idx_bytes_32, idx, 32); | |||
memcpy(sk_seed, sk+4, XMSS_N); | |||
memcpy(sk_prf, sk+4+XMSS_N, XMSS_N); | |||
memcpy(pub_seed, sk+4+2*XMSS_N, XMSS_N); | |||
// Update SK | |||
sk[0] = ((idx + 1) >> 24) & 255; | |||
sk[1] = ((idx + 1) >> 16) & 255; | |||
sk[2] = ((idx + 1) >> 8) & 255; | |||
sk[3] = (idx + 1) & 255; | |||
// -- Secret key for this non-forward-secure version is now updated. | |||
// -- A productive implementation should use a file handle instead and write the updated secret key at this point! | |||
// Init working params | |||
unsigned char R[XMSS_N]; | |||
unsigned char msg_h[XMSS_N]; | |||
unsigned char root[XMSS_N]; | |||
unsigned char ots_seed[XMSS_N]; | |||
uint32_t ots_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; | |||
// --------------------------------- | |||
// Message Hashing | |||
// --------------------------------- | |||
// Message Hash: | |||
// First compute pseudorandom value | |||
prf(R, idx_bytes_32, sk_prf, XMSS_N); | |||
// Generate hash key (R || root || idx) | |||
memcpy(hash_key, R, XMSS_N); | |||
memcpy(hash_key+XMSS_N, sk+4+3*XMSS_N, XMSS_N); | |||
to_byte(hash_key+2*XMSS_N, idx, XMSS_N); | |||
// Then use it for message digest | |||
h_msg(msg_h, m, mlen, hash_key, 3*XMSS_N); | |||
// Start collecting signature | |||
*smlen = 0; | |||
// Copy index to signature | |||
sm[0] = (idx >> 24) & 255; | |||
sm[1] = (idx >> 16) & 255; | |||
sm[2] = (idx >> 8) & 255; | |||
sm[3] = idx & 255; | |||
sm += 4; | |||
*smlen += 4; | |||
// Copy R to signature | |||
for (i = 0; i < XMSS_N; i++) | |||
sm[i] = R[i]; | |||
sm += XMSS_N; | |||
*smlen += XMSS_N; | |||
sm += XMSS_N; | |||
*smlen += XMSS_N; | |||
// ---------------------------------- | |||
// Now we start to "really sign" | |||
// ---------------------------------- | |||
// ---------------------------------- | |||
// Now we start to "really sign" | |||
// ---------------------------------- | |||
// Prepare Address | |||
setType(ots_addr, 0); | |||
setOTSADRS(ots_addr, idx); | |||
// Prepare Address | |||
set_type(ots_addr, 0); | |||
set_ots_addr(ots_addr, idx); | |||
// Compute seed for OTS key pair | |||
get_seed(ots_seed, sk_seed, ots_addr); | |||
// Compute seed for OTS key pair | |||
get_seed(ots_seed, sk_seed, ots_addr); | |||
// Compute WOTS signature | |||
wots_sign(sm, msg_h, ots_seed, pub_seed, ots_addr); | |||
// Compute WOTS signature | |||
wots_sign(sm, msg_h, ots_seed, pub_seed, ots_addr); | |||
sm += XMSS_WOTS_KEYSIZE; | |||
*smlen += XMSS_WOTS_KEYSIZE; | |||
sm += XMSS_WOTS_KEYSIZE; | |||
*smlen += XMSS_WOTS_KEYSIZE; | |||
compute_authpath_wots(root, sm, idx, sk_seed, pub_seed, ots_addr); | |||
sm += XMSS_TREEHEIGHT*XMSS_N; | |||
*smlen += XMSS_TREEHEIGHT*XMSS_N; | |||
compute_authpath_wots(root, sm, idx, sk_seed, pub_seed, ots_addr); | |||
sm += XMSS_TREEHEIGHT*XMSS_N; | |||
*smlen += XMSS_TREEHEIGHT*XMSS_N; | |||
memcpy(sm, m, mlen); | |||
*smlen += mlen; | |||
memcpy(sm, m, mlen); | |||
*smlen += mlen; | |||
return 0; | |||
return 0; | |||
} | |||
/* | |||
@@ -248,24 +250,24 @@ int xmss_core_sign(unsigned char *sk, unsigned char *sm, unsigned long long *sml | |||
*/ | |||
int xmssmt_core_keypair(unsigned char *pk, unsigned char *sk) | |||
{ | |||
uint16_t i; | |||
// Set idx = 0 | |||
for (i = 0; i < XMSS_INDEX_LEN; i++) { | |||
sk[i] = 0; | |||
} | |||
// Init SK_SEED (XMSS_N byte), SK_PRF (XMSS_N byte), and PUB_SEED (XMSS_N byte) | |||
randombytes(sk+XMSS_INDEX_LEN, 3*XMSS_N); | |||
// Copy PUB_SEED to public key | |||
memcpy(pk+XMSS_N, sk+XMSS_INDEX_LEN+2*XMSS_N, XMSS_N); | |||
// Set address to point on the single tree on layer d-1 | |||
uint32_t addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; | |||
setLayerADRS(addr, (XMSS_D-1)); | |||
// Compute root | |||
treehash(pk, 0, sk+XMSS_INDEX_LEN, pk+XMSS_N, addr); | |||
memcpy(sk+XMSS_INDEX_LEN+3*XMSS_N, pk, XMSS_N); | |||
return 0; | |||
uint16_t i; | |||
// Set idx = 0 | |||
for (i = 0; i < XMSS_INDEX_LEN; i++) { | |||
sk[i] = 0; | |||
} | |||
// Init SK_SEED (XMSS_N byte), SK_PRF (XMSS_N byte), and PUB_SEED (XMSS_N byte) | |||
randombytes(sk+XMSS_INDEX_LEN, 3*XMSS_N); | |||
// Copy PUB_SEED to public key | |||
memcpy(pk+XMSS_N, sk+XMSS_INDEX_LEN+2*XMSS_N, XMSS_N); | |||
// Set address to point on the single tree on layer d-1 | |||
uint32_t addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; | |||
set_layer_addr(addr, (XMSS_D-1)); | |||
// Compute root | |||
treehash(pk, 0, sk+XMSS_INDEX_LEN, pk+XMSS_N, addr); | |||
memcpy(sk+XMSS_INDEX_LEN+3*XMSS_N, pk, XMSS_N); | |||
return 0; | |||
} | |||
/** | |||
@@ -277,116 +279,94 @@ int xmssmt_core_keypair(unsigned char *pk, unsigned char *sk) | |||
*/ | |||
int xmssmt_core_sign(unsigned char *sk, unsigned char *sm, unsigned long long *smlen, const unsigned char *m, unsigned long long mlen) | |||
{ | |||
uint64_t idx_tree; | |||
uint32_t idx_leaf; | |||
uint64_t i; | |||
unsigned char sk_seed[XMSS_N]; | |||
unsigned char sk_prf[XMSS_N]; | |||
unsigned char pub_seed[XMSS_N]; | |||
// Init working params | |||
unsigned char R[XMSS_N]; | |||
unsigned char hash_key[3*XMSS_N]; | |||
unsigned char msg_h[XMSS_N]; | |||
unsigned char root[XMSS_N]; | |||
unsigned char ots_seed[XMSS_N]; | |||
uint32_t ots_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; | |||
unsigned char idx_bytes_32[32]; | |||
// Extract SK | |||
unsigned long long idx = 0; | |||
for (i = 0; i < XMSS_INDEX_LEN; i++) { | |||
idx |= ((unsigned long long)sk[i]) << 8*(XMSS_INDEX_LEN - 1 - i); | |||
} | |||
memcpy(sk_seed, sk+XMSS_INDEX_LEN, XMSS_N); | |||
memcpy(sk_prf, sk+XMSS_INDEX_LEN+XMSS_N, XMSS_N); | |||
memcpy(pub_seed, sk+XMSS_INDEX_LEN+2*XMSS_N, XMSS_N); | |||
// Update SK | |||
for (i = 0; i < XMSS_INDEX_LEN; i++) { | |||
sk[i] = ((idx + 1) >> 8*(XMSS_INDEX_LEN - 1 - i)) & 255; | |||
} | |||
// -- Secret key for this non-forward-secure version is now updated. | |||
// -- A productive implementation should use a file handle instead and write the updated secret key at this point! | |||
// --------------------------------- | |||
// Message Hashing | |||
// --------------------------------- | |||
// Message Hash: | |||
// First compute pseudorandom value | |||
to_byte(idx_bytes_32, idx, 32); | |||
prf(R, idx_bytes_32, sk_prf, XMSS_N); | |||
// Generate hash key (R || root || idx) | |||
memcpy(hash_key, R, XMSS_N); | |||
memcpy(hash_key+XMSS_N, sk+XMSS_INDEX_LEN+3*XMSS_N, XMSS_N); | |||
to_byte(hash_key+2*XMSS_N, idx, XMSS_N); | |||
// Then use it for message digest | |||
h_msg(msg_h, m, mlen, hash_key, 3*XMSS_N); | |||
// Start collecting signature | |||
*smlen = 0; | |||
// Copy index to signature | |||
for (i = 0; i < XMSS_INDEX_LEN; i++) { | |||
sm[i] = (idx >> 8*(XMSS_INDEX_LEN - 1 - i)) & 255; | |||
} | |||
sm += XMSS_INDEX_LEN; | |||
*smlen += XMSS_INDEX_LEN; | |||
// Copy R to signature | |||
for (i = 0; i < XMSS_N; i++) | |||
sm[i] = R[i]; | |||
uint64_t idx_tree; | |||
uint32_t idx_leaf; | |||
uint64_t i; | |||
unsigned char sk_seed[XMSS_N]; | |||
unsigned char sk_prf[XMSS_N]; | |||
unsigned char pub_seed[XMSS_N]; | |||
// Init working params | |||
unsigned char R[XMSS_N]; | |||
unsigned char hash_key[3*XMSS_N]; | |||
unsigned char msg_h[XMSS_N]; | |||
unsigned char root[XMSS_N]; | |||
unsigned char ots_seed[XMSS_N]; | |||
uint32_t ots_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; | |||
unsigned char idx_bytes_32[32]; | |||
// Extract SK | |||
unsigned long long idx = 0; | |||
for (i = 0; i < XMSS_INDEX_LEN; i++) { | |||
idx |= ((unsigned long long)sk[i]) << 8*(XMSS_INDEX_LEN - 1 - i); | |||
} | |||
sm += XMSS_N; | |||
*smlen += XMSS_N; | |||
memcpy(sk_seed, sk+XMSS_INDEX_LEN, XMSS_N); | |||
memcpy(sk_prf, sk+XMSS_INDEX_LEN+XMSS_N, XMSS_N); | |||
memcpy(pub_seed, sk+XMSS_INDEX_LEN+2*XMSS_N, XMSS_N); | |||
// Update SK | |||
for (i = 0; i < XMSS_INDEX_LEN; i++) { | |||
sk[i] = ((idx + 1) >> 8*(XMSS_INDEX_LEN - 1 - i)) & 255; | |||
} | |||
// -- Secret key for this non-forward-secure version is now updated. | |||
// -- A productive implementation should use a file handle instead and write the updated secret key at this point! | |||
// ---------------------------------- | |||
// Now we start to "really sign" | |||
// ---------------------------------- | |||
// Handle lowest layer separately as it is slightly different... | |||
// --------------------------------- | |||
// Message Hashing | |||
// --------------------------------- | |||
// Prepare Address | |||
setType(ots_addr, 0); | |||
idx_tree = idx >> XMSS_TREEHEIGHT; | |||
idx_leaf = (idx & ((1 << XMSS_TREEHEIGHT)-1)); | |||
setLayerADRS(ots_addr, 0); | |||
setTreeADRS(ots_addr, idx_tree); | |||
setOTSADRS(ots_addr, idx_leaf); | |||
// Message Hash: | |||
// First compute pseudorandom value | |||
to_byte(idx_bytes_32, idx, 32); | |||
prf(R, idx_bytes_32, sk_prf, XMSS_N); | |||
// Generate hash key (R || root || idx) | |||
memcpy(hash_key, R, XMSS_N); | |||
memcpy(hash_key+XMSS_N, sk+XMSS_INDEX_LEN+3*XMSS_N, XMSS_N); | |||
to_byte(hash_key+2*XMSS_N, idx, XMSS_N); | |||
// Compute seed for OTS key pair | |||
get_seed(ots_seed, sk_seed, ots_addr); | |||
// Then use it for message digest | |||
h_msg(msg_h, m, mlen, hash_key, 3*XMSS_N); | |||
// Compute WOTS signature | |||
wots_sign(sm, msg_h, ots_seed, pub_seed, ots_addr); | |||
// Start collecting signature | |||
*smlen = 0; | |||
sm += XMSS_WOTS_KEYSIZE; | |||
*smlen += XMSS_WOTS_KEYSIZE; | |||
// Copy index to signature | |||
for (i = 0; i < XMSS_INDEX_LEN; i++) { | |||
sm[i] = (idx >> 8*(XMSS_INDEX_LEN - 1 - i)) & 255; | |||
} | |||
compute_authpath_wots(root, sm, idx_leaf, sk_seed, pub_seed, ots_addr); | |||
sm += XMSS_TREEHEIGHT*XMSS_N; | |||
*smlen += XMSS_TREEHEIGHT*XMSS_N; | |||
sm += XMSS_INDEX_LEN; | |||
*smlen += XMSS_INDEX_LEN; | |||
// Copy R to signature | |||
for (i = 0; i < XMSS_N; i++) { | |||
sm[i] = R[i]; | |||
} | |||
sm += XMSS_N; | |||
*smlen += XMSS_N; | |||
// ---------------------------------- | |||
// Now we start to "really sign" | |||
// ---------------------------------- | |||
// Handle lowest layer separately as it is slightly different... | |||
// Now loop over remaining layers... | |||
unsigned int j; | |||
for (j = 1; j < XMSS_D; j++) { | |||
// Prepare Address | |||
idx_leaf = (idx_tree & ((1 << XMSS_TREEHEIGHT)-1)); | |||
idx_tree = idx_tree >> XMSS_TREEHEIGHT; | |||
setLayerADRS(ots_addr, j); | |||
setTreeADRS(ots_addr, idx_tree); | |||
setOTSADRS(ots_addr, idx_leaf); | |||
set_type(ots_addr, 0); | |||
idx_tree = idx >> XMSS_TREEHEIGHT; | |||
idx_leaf = (idx & ((1 << XMSS_TREEHEIGHT)-1)); | |||
set_layer_addr(ots_addr, 0); | |||
set_tree_addr(ots_addr, idx_tree); | |||
set_ots_addr(ots_addr, idx_leaf); | |||
// Compute seed for OTS key pair | |||
get_seed(ots_seed, sk_seed, ots_addr); | |||
// Compute WOTS signature | |||
wots_sign(sm, root, ots_seed, pub_seed, ots_addr); | |||
wots_sign(sm, msg_h, ots_seed, pub_seed, ots_addr); | |||
sm += XMSS_WOTS_KEYSIZE; | |||
*smlen += XMSS_WOTS_KEYSIZE; | |||
@@ -394,10 +374,33 @@ int xmssmt_core_sign(unsigned char *sk, unsigned char *sm, unsigned long long *s | |||
compute_authpath_wots(root, sm, idx_leaf, sk_seed, pub_seed, ots_addr); | |||
sm += XMSS_TREEHEIGHT*XMSS_N; | |||
*smlen += XMSS_TREEHEIGHT*XMSS_N; | |||
} | |||
memcpy(sm, m, mlen); | |||
*smlen += mlen; | |||
// Now loop over remaining layers... | |||
unsigned int j; | |||
for (j = 1; j < XMSS_D; j++) { | |||
// Prepare Address | |||
idx_leaf = (idx_tree & ((1 << XMSS_TREEHEIGHT)-1)); | |||
idx_tree = idx_tree >> XMSS_TREEHEIGHT; | |||
set_layer_addr(ots_addr, j); | |||
set_tree_addr(ots_addr, idx_tree); | |||
set_ots_addr(ots_addr, idx_leaf); | |||
// Compute seed for OTS key pair | |||
get_seed(ots_seed, sk_seed, ots_addr); | |||
// Compute WOTS signature | |||
wots_sign(sm, root, ots_seed, pub_seed, ots_addr); | |||
sm += XMSS_WOTS_KEYSIZE; | |||
*smlen += XMSS_WOTS_KEYSIZE; | |||
compute_authpath_wots(root, sm, idx_leaf, sk_seed, pub_seed, ots_addr); | |||
sm += XMSS_TREEHEIGHT*XMSS_N; | |||
*smlen += XMSS_TREEHEIGHT*XMSS_N; | |||
} | |||
memcpy(sm, m, mlen); | |||
*smlen += mlen; | |||
return 0; | |||
return 0; | |||
} |
@@ -5,35 +5,37 @@ Joost Rijneveld | |||
Public domain. | |||
*/ | |||
#include "wots.h" | |||
#ifndef XMSS_CORE_H | |||
#define XMSS_CORE_H | |||
typedef struct{ | |||
unsigned int h; | |||
unsigned int next_idx; | |||
unsigned int stackusage; | |||
unsigned char completed; | |||
unsigned char *node; | |||
unsigned int h; | |||
unsigned int next_idx; | |||
unsigned int stackusage; | |||
unsigned char completed; | |||
unsigned char *node; | |||
} treehash_inst; | |||
typedef struct { | |||
unsigned char *stack; | |||
unsigned int stackoffset; | |||
unsigned char *stacklevels; | |||
unsigned char *auth; | |||
unsigned char *keep; | |||
treehash_inst *treehash; | |||
unsigned char *retain; | |||
unsigned int next_leaf; | |||
unsigned char *stack; | |||
unsigned int stackoffset; | |||
unsigned char *stacklevels; | |||
unsigned char *auth; | |||
unsigned char *keep; | |||
treehash_inst *treehash; | |||
unsigned char *retain; | |||
unsigned int next_leaf; | |||
} bds_state; | |||
/** | |||
* Initialize BDS state struct | |||
* parameter names are the same as used in the description of the BDS traversal | |||
*/ | |||
void xmss_set_bds_state(bds_state *state, unsigned char *stack, int stackoffset, unsigned char *stacklevels, unsigned char *auth, unsigned char *keep, treehash_inst *treehash, unsigned char *retain, int next_leaf); | |||
void xmss_set_bds_state(bds_state *state, unsigned char *stack, | |||
int stackoffset, unsigned char *stacklevels, | |||
unsigned char *auth, unsigned char *keep, | |||
treehash_inst *treehash, unsigned char *retain, | |||
int next_leaf); | |||
/** | |||
* Generates a XMSS key pair for a given parameter set. | |||
* Format sk: [(32bit) idx || SK_SEED || SK_PRF || PUB_SEED || root] | |||
@@ -42,36 +44,45 @@ void xmss_set_bds_state(bds_state *state, unsigned char *stack, int stackoffset, | |||
int xmss_core_keypair(unsigned char *pk, unsigned char *sk, bds_state *state); | |||
/** | |||
* Signs a message. | |||
* Returns | |||
* Returns | |||
* 1. an array containing the signature followed by the message AND | |||
* 2. an updated secret key! | |||
* | |||
*/ | |||
int xmss_core_sign(unsigned char *sk, bds_state *state, unsigned char *sig_msg, unsigned long long *sig_msg_len, const unsigned char *msg,unsigned long long msglen); | |||
int xmss_core_sign(unsigned char *sk, bds_state *state, | |||
unsigned char *sm, unsigned long long *smlen, | |||
const unsigned char *m, unsigned long long mlen); | |||
/** | |||
* Verifies a given message signature pair under a given public key. | |||
* | |||
* Note: msg and msglen are pure outputs which carry the message in case verification succeeds. The (input) message is assumed to be within sig_msg which has the form (sig||msg). | |||
* | |||
* Note: msg and mlen are pure outputs which carry the message in case verification succeeds. The (input) message is assumed to be within sm which has the form (sig||msg). | |||
*/ | |||
int xmss_core_sign_open(unsigned char *msg,unsigned long long *msglen, const unsigned char *sig_msg,unsigned long long sig_msg_len, const unsigned char *pk); | |||
int xmss_core_sign_open(unsigned char *m, unsigned long long *mlen, | |||
const unsigned char *sm, unsigned long long smlen, | |||
const unsigned char *pk); | |||
/* | |||
* Generates a XMSSMT key pair for a given parameter set. | |||
* Format sk: [(ceil(h/8) bit) idx || SK_SEED || SK_PRF || PUB_SEED || root] | |||
* Format pk: [root || PUB_SEED] omitting algo oid. | |||
*/ | |||
int xmssmt_core_keypair(unsigned char *pk, unsigned char *sk, bds_state *states, unsigned char *wots_sigs); | |||
int xmssmt_core_keypair(unsigned char *pk, unsigned char *sk, | |||
bds_state *states, unsigned char *wots_sigs); | |||
/** | |||
* Signs a message. | |||
* Returns | |||
* Returns | |||
* 1. an array containing the signature followed by the message AND | |||
* 2. an updated secret key! | |||
* | |||
*/ | |||
int xmssmt_core_sign(unsigned char *sk, bds_state *state, unsigned char *wots_sigs, unsigned char *sig_msg, unsigned long long *sig_msg_len, const unsigned char *msg, unsigned long long msglen); | |||
int xmssmt_core_sign(unsigned char *sk, | |||
bds_state *states, unsigned char *wots_sigs, | |||
unsigned char *sm, unsigned long long *smlen, | |||
const unsigned char *m, unsigned long long mlen); | |||
/** | |||
* Verifies a given message signature pair under a given public key. | |||
*/ | |||
int xmssmt_core_sign_open(unsigned char *msg, unsigned long long *msglen, const unsigned char *sig_msg, unsigned long long sig_msg_len, const unsigned char *pk); | |||
int xmssmt_core_sign_open(unsigned char *m, unsigned long long *mlen, | |||
const unsigned char *sm, unsigned long long smlen, | |||
const unsigned char *pk); | |||
#endif | |||