Keep our C implementation honest.
Change-Id: I9e9e686b7f730b61218362450971afdd82b0b640
Reviewed-on: https://boringssl-review.googlesource.com/8782
Reviewed-by: Steven Valdez <svaldez@google.com>
Reviewed-by: David Benjamin <davidben@google.com>
Commit-Queue: David Benjamin <davidben@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
It tests the same thing right now with Fake TLS 1.3, but we'll need this
tested in real TLS 1.3.
Change-Id: Iacd32c2d4e56d341e5709a2ccd80fed5d556c94d
Reviewed-on: https://boringssl-review.googlesource.com/8783
Reviewed-by: Steven Valdez <svaldez@google.com>
Reviewed-by: David Benjamin <davidben@google.com>
Commit-Queue: David Benjamin <davidben@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
This way we can test them at TLS 1.3 as well. The tests for extensions
which will not exist in TLS 1.3 are intentionally skipped, though the
commit which adds TLS 1.3 will want to add negative tests for them.
Change-Id: I41784298cae44eb6c27b13badae700ad02f9c721
Reviewed-on: https://boringssl-review.googlesource.com/8788
Reviewed-by: David Benjamin <davidben@google.com>
Commit-Queue: David Benjamin <davidben@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
This is legal to enforce and we can keep our server honest.
Change-Id: I86ab796dcb51f88ab833fcf5b57aff40e14c7363
Reviewed-on: https://boringssl-review.googlesource.com/8789
Reviewed-by: Adam Langley <agl@google.com>
Commit-Queue: David Benjamin <davidben@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
This allows us to implement custom RSA-PSS-based keys, so the async TLS
1.3 tests can proceed. For now, both sign and sign_digest exist, so
downstreams only need to manage a small change atomically. We'll remove
sign_digest separately.
In doing so, fold all the *_complete hooks into a single complete hook
as no one who implemented two operations ever used different function
pointers for them.
While I'm here, I've bumped BORINGSSL_API_VERSION. I do not believe we
have any SSL_PRIVATE_KEY_METHOD versions who cannot update atomically,
but save a round-trip in case we do. It's free.
Change-Id: I7f031aabfb3343805deee429b9e244aed5d76aed
Reviewed-on: https://boringssl-review.googlesource.com/8786
Reviewed-by: David Benjamin <davidben@google.com>
Commit-Queue: David Benjamin <davidben@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
This makes custom private keys and EVP_PKEYs symmetric again. There is
no longer a requirement that the caller pre-filter the configured
signing prefs.
Also switch EVP_PKEY_RSA to NID_rsaEncryption. These are identical, but
if some key types are to be NIDs, we should make them all NIDs.
Change-Id: I82ea41c27a3c57f4c4401ffe1ccad406783e4c64
Reviewed-on: https://boringssl-review.googlesource.com/8785
Reviewed-by: David Benjamin <davidben@google.com>
This gives us a sigalg-based API for configuring signing algorithms.
Change-Id: Ib746a56ebd1061eadd2620cdb140d5171b59bc02
Reviewed-on: https://boringssl-review.googlesource.com/8784
Reviewed-by: Adam Langley <agl@google.com>
Change-Id: I2f5c45e0e491f9dd25c2463710697599fea708ed
Reviewed-on: https://boringssl-review.googlesource.com/8794
Reviewed-by: David Benjamin <davidben@google.com>
Commit-Queue: David Benjamin <davidben@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
The server must switch the outgoing keys early so that client
certificate alerts are sent with the right keys. (Also so that half-RTT
data may be sent.)
Change-Id: Id5482c811aa0b747ab646453b3856a83f23d3f06
Reviewed-on: https://boringssl-review.googlesource.com/8791
Reviewed-by: David Benjamin <davidben@google.com>
Commit-Queue: David Benjamin <davidben@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
TLS 1.3 will go through very different code than everything else. Even
SSL 3.0 is somewhat special-cased now. Move the invalid signature tests
there and run at all versions.
Change-Id: Idd0ee9aac2939c0c8fd9af2ea7b4a22942121c60
Reviewed-on: https://boringssl-review.googlesource.com/8775
Reviewed-by: David Benjamin <davidben@google.com>
The TLS 1.3 CertificateRequest code advertised the signing set, not the
verify set. It also wasn't saving the peer's signature algorithm.
Change-Id: I62247d5703e30d8463c92f3d597dbeb403b355ae
Reviewed-on: https://boringssl-review.googlesource.com/8774
Reviewed-by: David Benjamin <davidben@google.com>
ServerKeyExchange and SigningHash are both very 1.2-specific names.
Replace with names that fit both 1.2 and 1.3 (and are a bit shorter).
Also fix a reference to ServerKeyExchange in sign.go.
Change-Id: I25d4ff135cc77cc545f0f9e94014244d56a9e96b
Reviewed-on: https://boringssl-review.googlesource.com/8773
Reviewed-by: David Benjamin <davidben@google.com>
The API is definitive and works in TLS 1.3.
Change-Id: Ifefa295bc792f603b297e796559355f66f668811
Reviewed-on: https://boringssl-review.googlesource.com/8772
Reviewed-by: David Benjamin <davidben@google.com>
The extension is not defined in TLS 1.3.
Change-Id: I5eb85f7142be7e11f1a9c0e4680e8ace9ac50feb
Reviewed-on: https://boringssl-review.googlesource.com/8771
Commit-Queue: David Benjamin <davidben@google.com>
Reviewed-by: Steven Valdez <svaldez@google.com>
Reviewed-by: David Benjamin <davidben@google.com>
Resumption is not yet implemented.
Change-Id: I7c3df2912456a0e0d5339d7b0b1f5819f958e900
Reviewed-on: https://boringssl-review.googlesource.com/8770
Reviewed-by: David Benjamin <davidben@google.com>
Commit-Queue: David Benjamin <davidben@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
The preceding client CA bug is actually almost unreachable since the
list is initialized to a non-NULL empty list. But if one tries hard
enough, a NULL one is possible.
Change-Id: I49e69511bf65b0178c4e0acdb887f8ba7d85faff
Reviewed-on: https://boringssl-review.googlesource.com/8769
Reviewed-by: Adam Langley <agl@google.com>
Commit-Queue: David Benjamin <davidben@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
Tested against the C code.
Change-Id: I62639e1e46cd4f57625be5d4ff7f6902b318c278
Reviewed-on: https://boringssl-review.googlesource.com/8768
Reviewed-by: Steven Valdez <svaldez@google.com>
Reviewed-by: David Benjamin <davidben@google.com>
We need EnableAllCiphers to make progress so, temporarily, defer the PSK
error. Also flip a true/false bug in the OCSP stapling logic.
Change-Id: Iad597c84393e1400c42b8b290eedc16f73f5ed30
Reviewed-on: https://boringssl-review.googlesource.com/8766
Commit-Queue: David Benjamin <davidben@google.com>
Reviewed-by: Steven Valdez <svaldez@google.com>
Reviewed-by: David Benjamin <davidben@google.com>
deriveTrafficAEAD gets confused by the EnableAllCiphers bug. As a hack,
just return the nil cipher. We only need to progress far enough to read
the shim's error code.
Change-Id: I72d25ac463a03a0e99dd08c38a1a7daef1f94311
Reviewed-on: https://boringssl-review.googlesource.com/8763
Commit-Queue: David Benjamin <davidben@google.com>
Reviewed-by: Steven Valdez <svaldez@google.com>
Reviewed-by: David Benjamin <davidben@google.com>
We'll enable it again later, but the initial land of the 1.3 handshake
will not do resumption. In preparation, turn those off.
Change-Id: I5f98b6a9422eb96be26c4ec41ca7ecde5f592da7
Reviewed-on: https://boringssl-review.googlesource.com/8765
Commit-Queue: David Benjamin <davidben@google.com>
Reviewed-by: Steven Valdez <svaldez@google.com>
Reviewed-by: David Benjamin <davidben@google.com>
In preparation for getting the tests going.
Change-Id: Ifd2ab09e6ce91f99abde759d5db8dc6554521572
Reviewed-on: https://boringssl-review.googlesource.com/8764
Commit-Queue: David Benjamin <davidben@google.com>
Reviewed-by: Steven Valdez <svaldez@google.com>
Reviewed-by: David Benjamin <davidben@google.com>
Otherwise adding it to the handshake hash doesn't work right.
Change-Id: I2fabae72e8b088a5df26bbeac946f19144d58733
Reviewed-on: https://boringssl-review.googlesource.com/8762
Reviewed-by: Steven Valdez <svaldez@google.com>
Reviewed-by: David Benjamin <davidben@google.com>
Commit-Queue: David Benjamin <davidben@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
We'll enable them once we've gotten it working. For now, our TLS 1.3
believes there is no PSK.
Change-Id: I5ae51266927c8469c671844da9a0f7387c297050
Reviewed-on: https://boringssl-review.googlesource.com/8760
Reviewed-by: Steven Valdez <svaldez@google.com>
Reviewed-by: David Benjamin <davidben@google.com>
Commit-Queue: David Benjamin <davidben@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
RSASSA-PSS with SHA-512 is slightly too large for 1024-bit RSA. One
should not be using 1024-bit RSA, but it's common enough for tests
(including our own in runner before they were regenerated), that we
should probably do the size check and avoid unnecessary turbulence to
everyone else's test setups.
Change-Id: If0c7e401d7d05404755cba4cbff76de3bc65c138
Reviewed-on: https://boringssl-review.googlesource.com/8746
Reviewed-by: Steven Valdez <svaldez@google.com>
Reviewed-by: David Benjamin <davidben@google.com>
Commit-Queue: David Benjamin <davidben@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
Tested by having client and server talk to each other. This adds the
certificate_extensions field to CertificateRequest which I'd previously
missed. (We completely ignore the field, with the expectation that the C
code won't have anything useful to do with it either.)
Change-Id: I74f96acd36747d4b6a6f533535e36ea8e94d2be8
Reviewed-on: https://boringssl-review.googlesource.com/8710
Reviewed-by: David Benjamin <davidben@google.com>
[Originally written by nharper, revised by davidben.]
Change-Id: If1d45c33994476f4bc9cd69831b6bbed40f792d0
Reviewed-on: https://boringssl-review.googlesource.com/8599
Reviewed-by: David Benjamin <davidben@google.com>
For now, skip the 1.2 -> 1.1 signal since that will affect shipping
code. We may as well enable it too, but wait until things have settled
down. This implements the version in draft-14 since draft-13's isn't
backwards-compatible.
Change-Id: I46be43e6f4c5203eb4ae006d1c6a2fe7d7a949ec
Reviewed-on: https://boringssl-review.googlesource.com/8724
Reviewed-by: David Benjamin <davidben@google.com>
Now that the odd client/server split (a remnant from the original
crypto/tls code not handling signing-hash/PRF mismatches) is gone, it
can just be pulled from the config.
Change-Id: Idb46c026d6529a2afc2b43d4afedc0aa950614db
Reviewed-on: https://boringssl-review.googlesource.com/8723
Reviewed-by: David Benjamin <davidben@google.com>
Saves worrying about forgetting it. (And indeed I forgot it in the TLS
1.3 code.)
Change-Id: Ibb55a83eddba675da64b7cf2c45eac6348c97784
Reviewed-on: https://boringssl-review.googlesource.com/8722
Reviewed-by: David Benjamin <davidben@google.com>
This way we can test failing client auth without having to worry about
first getting through server auth.
Change-Id: Iaf996d87ac3df702a17e76c26006ca9b2a5bdd1f
Reviewed-on: https://boringssl-review.googlesource.com/8721
Reviewed-by: David Benjamin <davidben@google.com>
[Rebased and tests added by davidben.]
In doing so, regenerate the test RSA certificate to be 2048-bit RSA.
RSA-PSS with SHA-512 is actually too large for 1024-bit RSA. Also make
the sigalg test loop test versions that do and don't work which subsumes
the ecdsa_sha1 TLS 1.3 test.
For now, RSA-PKCS1 is still allowed because NSS has yet to implement
RSA-PSS and we'd like to avoid complicated interop testing.
Change-Id: I686b003ef7042ff757bdaab8d5838b7a4d6edd87
Reviewed-on: https://boringssl-review.googlesource.com/8613
Reviewed-by: David Benjamin <davidben@google.com>
(Of course, it's still signing ServerKeyExchange messages since the
handshake's the old one.)
Change-Id: I35844a329d983f61ed0b5be20b333487406fe7e4
Reviewed-on: https://boringssl-review.googlesource.com/8614
Reviewed-by: David Benjamin <davidben@google.com>
Implement in both C and Go. To test this, route config into all the
sign.go functions so we can expose bugs to skip the check.
Unfortunately, custom private keys are going to be a little weird since
we can't check their curve type. We may need to muse on what to do here.
Perhaps the key type bit should return an enum that includes the curve?
It's weird because, going forward, hopefully all new key types have
exactly one kind of signature so key type == sig alg == sig alg prefs.
Change-Id: I1f487ec143512ead931e3392e8be2a3172abe3d2
Reviewed-on: https://boringssl-review.googlesource.com/8701
Reviewed-by: David Benjamin <davidben@google.com>
That instead happens via signature algorithms, which will be done in a
follow-up commit.
Change-Id: I97bc4646319dddbff62552244b0dd7e9bb2650ef
Reviewed-on: https://boringssl-review.googlesource.com/8700
Reviewed-by: David Benjamin <davidben@google.com>
This is in preparation for TLS 1.3 enforcing curve matches in signature
algorithms.
Change-Id: I82c3a1862703a15e4e36ceb7ec40e27235b620c3
Reviewed-on: https://boringssl-review.googlesource.com/8699
Reviewed-by: David Benjamin <davidben@google.com>
{sha256,ecdsa} should not be silently accepted for an RSA key.
Change-Id: I0c0eea5071f7a59f2707ca0ea023a16cc4126d6a
Reviewed-on: https://boringssl-review.googlesource.com/8697
Reviewed-by: David Benjamin <davidben@google.com>
TLS 1.3 also forbids signing SHA-1 digests, but this will be done as a
consequence of forbidding PKCS#1 in 1.3 altogether (rsa_sign_sha1) and
requiring a curve match in ECDSA (ecdsa_sha1).
Change-Id: I665971139ccef9e270fd5796c5e6a814a8f663b1
Reviewed-on: https://boringssl-review.googlesource.com/8696
Reviewed-by: David Benjamin <davidben@google.com>
Rather than blindly select SHA-1 if we can't find a matching one, act as
if the peer advertised rsa_pkcs1_sha1 and ecdsa_sha1. This means that we
will fail the handshake if no common algorithm may be found.
This is done in preparation for removing the SHA-1 default in TLS 1.3.
Change-Id: I3584947909d3d6988b940f9404044cace265b20d
Reviewed-on: https://boringssl-review.googlesource.com/8695
Reviewed-by: David Benjamin <davidben@google.com>
This reverts commits:
8d79ed674019fdcb52348d79ed6740
Because WebRTC (at least) includes our headers in an extern "C" block,
which precludes having any C++ in them.
Change-Id: Ia849f43795a40034cbd45b22ea680b51aab28b2d
For when the PackHandshakeFlight tests get enabled.
Change-Id: Iee20fd27d88ed58f59af3b7e2dd92235d35af9ce
Reviewed-on: https://boringssl-review.googlesource.com/8663
Reviewed-by: David Benjamin <davidben@google.com>
This change scatters the contents of the two scoped_types.h files into
the headers for each of the areas of the code. The types are now in the
|bssl| namespace.
Change-Id: I802b8de68fba4786b6a0ac1bacd11d81d5842423
Reviewed-on: https://boringssl-review.googlesource.com/8731
Reviewed-by: Adam Langley <agl@google.com>
We currently have the situation where the |tool| and |bssl_shim| code
includes scoped_types.h from crypto/test and ssl/test. That's weird and
shouldn't happen. Also, our C++ consumers might quite like to have
access to the scoped types.
Thus this change moves some of the template code to base.h and puts it
all in a |bssl| namespace to prepare for scattering these types into
their respective headers. In order that all the existing test code be
able to access these types, it's all moved into the same namespace.
Change-Id: I3207e29474dc5fcc344ace43119df26dae04eabb
Reviewed-on: https://boringssl-review.googlesource.com/8730
Reviewed-by: David Benjamin <davidben@google.com>
Since they include an ECDHE exchange in them, they are equally-well
suited to False Start.
Change-Id: I75d31493a614a78ccbf337574c359271831d654d
Reviewed-on: https://boringssl-review.googlesource.com/8732
Reviewed-by: David Benjamin <davidben@google.com>
[Originally written by nharper, revised by davidben.]
When we add this in the real code, this will want ample tests and hooks
for bugs, but get the core logic in to start with.
Change-Id: I86cf0b6416c9077dbb6471a1802ae984b8fa6c72
Reviewed-on: https://boringssl-review.googlesource.com/8598
Reviewed-by: David Benjamin <davidben@google.com>
TLS 1.3 will use a different function from processClientHello.
Change-Id: I8b26a601cf553834b508feab051927d5986091ca
Reviewed-on: https://boringssl-review.googlesource.com/8597
Reviewed-by: David Benjamin <davidben@google.com>
As with the client, the logic around extensions in 1.3 will want to be
tweaked. readClientHello will probably shrink a bit. (We could probably
stuff 1.3 into the existing parameter negotiation logic, but I expect
it'll get a bit unwieldy once HelloRetryRequest, PSK resumption, and
0-RTT get in there, so I think it's best we leave them separate.)
Change-Id: Id8c323a06a1def6857a59accd9f87fb0b088385a
Reviewed-on: https://boringssl-review.googlesource.com/8596
Reviewed-by: David Benjamin <davidben@google.com>
While the random connection property extensions like ALPN and SRTP
remain largely unchanged in TLS 1.3 (but for interaction with 0-RTT),
authentication-related extensions change significantly and need
dedicated logic.
Change-Id: I2588935c2563a22e9879fb81478b8df5168b43de
Reviewed-on: https://boringssl-review.googlesource.com/8602
Reviewed-by: David Benjamin <davidben@google.com>
Test with and without PackHandshakeFlight enabled to cover when the
early post-CCS fragment will get packed into one of the pre-CCS
handshake records. Also test the resumption cases too to cover more
state transitions.
The various CCS-related tests (since CCS is kind of a mess) are pulled
into their own group.
Change-Id: I6384f2fb28d9885cd2b06d59e765e080e3822d8a
Reviewed-on: https://boringssl-review.googlesource.com/8661
Reviewed-by: David Benjamin <davidben@google.com>
[Originally written by nharper and then revised by davidben.]
Most features are missing, but it works for a start. To avoid breaking
the fake TLS 1.3 tests while the C code is still not landed, all the
logic is gated on a global boolean. When the C code gets in, we'll
set it to true and remove this boolean.
Change-Id: I6b3a369890864c26203fc9cda37c8250024ce91b
Reviewed-on: https://boringssl-review.googlesource.com/8601
Reviewed-by: David Benjamin <davidben@google.com>
I'm surprised we'd never tested this. In addition to splitting handshake
records up, one may pack multiple handshakes into a single record, as
they fit. Generalize the DTLS handshake flush hook to do this in TLS as
well.
Change-Id: Ia546d18c7c56ba45e50f489c5b53e1fcd6404f51
Reviewed-on: https://boringssl-review.googlesource.com/8650
Reviewed-by: David Benjamin <davidben@google.com>
TLS 1.2 and 1.3 will process more-or-less the same server extensions,
but at slightly different points in the handshake. In preparation for
that, split this out into its own function.
Change-Id: I5494dee4724295794dfd13c5e9f9f83eade6b20a
Reviewed-on: https://boringssl-review.googlesource.com/8586
Reviewed-by: Adam Langley <agl@google.com>
[Originally written by nharper, tweaked by davidben.]
For now, ignore them completely.
Change-Id: I28602f219d210a857aa80d6e735557b8d2d1c590
Reviewed-on: https://boringssl-review.googlesource.com/8585
Reviewed-by: Adam Langley <agl@google.com>
Also move them with the other version negotiation tests.
Change-Id: I8ea5777c131f8ab618de3c6d02038e802bd34dd0
Reviewed-on: https://boringssl-review.googlesource.com/8550
Reviewed-by: David Benjamin <davidben@google.com>
TLS 1.2 and 1.3 will both need to call it at different points.
Change-Id: Id62ec289213aa6c06ebe5fe65a57ca6c2b53d538
Reviewed-on: https://boringssl-review.googlesource.com/8600
Reviewed-by: David Benjamin <davidben@google.com>
TLS 1.3 will need to call it under different circumstances. We will also
wish to test TLS 1.3 post-handshake auth, so this function must work
without being passed handshake state.
In doing so, implement matching based on signature algorithms as 1.3
does away with the certificate type list.
Change-Id: Ibdee44bbbb589686fcbcd7412432100279bfac63
Reviewed-on: https://boringssl-review.googlesource.com/8589
Reviewed-by: David Benjamin <davidben@google.com>
[Originally written by nharper and then tweaked by davidben.]
TLS 1.3 tweaks them slightly, so being able to write them in one pass
rather than two will be somewhat more convenient.
Change-Id: Ib7e2d63e28cbae025c840bbb34e9e9c295b44dc6
Reviewed-on: https://boringssl-review.googlesource.com/8588
Reviewed-by: David Benjamin <davidben@google.com>
[Originally written by nharper. Test added by davidben.]
Test vectors taken from hkdf_test.c.
Change-Id: I214bcae325e9c7c242632a169ab5cf80a3178989
Reviewed-on: https://boringssl-review.googlesource.com/8587
Reviewed-by: David Benjamin <davidben@google.com>
[Originally written by nharper, tweaked by davidben.]
In TLS 1.3, every extension the server previously sent gets moved to a
separate EncryptedExtensions message. To be able to share code between
the two, parse those extensions separately. For now, the handshake reads
from serverHello.extensions.foo, though later much of the extensions
logic will probably handle serverExtensions independent of whether it
resides in ServerHello or EncryptedExtensions.
Change-Id: I07aaae6df3ef6fbac49e64661d14078d0dbeafb0
Reviewed-on: https://boringssl-review.googlesource.com/8584
Reviewed-by: David Benjamin <davidben@google.com>
[Originally written by nharper and tweaked by davidben.]
This will end up being split in two with most of the ServerHello
extensions being serializable in both ServerHello and
EncryptedExtensions depending on version.
Change-Id: Ida5876d55fbafb982bc2e5fdaf82872e733d6536
Reviewed-on: https://boringssl-review.googlesource.com/8580
Reviewed-by: David Benjamin <davidben@google.com>
[Originally written by nharper and then slightly tweaked by davidben.]
Between the new deeply nested extension (KeyShare) and most of
ServerHello extensions moving to a separate message, this is probably
long overdue.
Change-Id: Ia86e30f56b597471bb7e27d726a9ec92687b4d10
Reviewed-on: https://boringssl-review.googlesource.com/8569
Reviewed-by: David Benjamin <davidben@google.com>
TLS 1.3 defines its own EncryptedExtensions message. The existing one is
for Channel ID which probably should not have tried to generalize
itself.
Change-Id: I4f48bece98510eb54e64fbf3df6c2a7332bc0261
Reviewed-on: https://boringssl-review.googlesource.com/8566
Reviewed-by: David Benjamin <davidben@google.com>
Right now I believe we are testing against DTLS 1.3 ClientHellos. Fix
this in preparation for making VersionTLS13 go elsewhere in the Go code.
Unfortunately, I made the mistake of mapping DTLS 1.0 to TLS 1.0 rather
than 1.1 in Go. This does mean the names of the tests naturally work out
correctly, but we have to deal with this awkward DTLS-1.1-shaped hole in
our logic.
Change-Id: I8715582ed90acc1f08197831cae6de8d5442d028
Reviewed-on: https://boringssl-review.googlesource.com/8562
Reviewed-by: David Benjamin <davidben@google.com>
In preparation for TLS 1.3 using its actual handshake, switch most tests
to TLS 1.3 and add liberal TODOs for the tests which will need TLS 1.3
variants.
In doing so, move a few tests from basic tests into one of the groups.
Also rename BadECDSACurve to BadECDHECurve (it was never ECDSA) and add
a test to make sure FALLBACK_SCSV is correctly sensitive to the maximum
version.
Change-Id: Ifca6cf8f7a48d6f069483c0aab192ae691b1dd8e
Reviewed-on: https://boringssl-review.googlesource.com/8560
Reviewed-by: David Benjamin <davidben@google.com>
TLS 1.3 defines a new SignatureScheme uint16 enum that is backwards
compatible on the wire with TLS1.2's SignatureAndHashAlgorithm. This
change updates the go testing code to use a single signatureAlgorithm
enum (instead of 2 separate signature and hash enums) in preparation for
TLS 1.3. It also unifies all the signing around this new scheme,
effectively backporting the change to TLS 1.2.
For now, it does not distinguish signature algorithms between 1.2 and
1.3 (RSA-PSS instead of RSA-PKCS1, ECDSA must match curve types). When
the C code is ready make a similar change, the Go code will be updated
to match.
[Originally written by nharper, tweaked significantly by davidben.]
Change-Id: If9a315c4670755089ac061e4ec254ef3457a00de
Reviewed-on: https://boringssl-review.googlesource.com/8450
Reviewed-by: David Benjamin <davidben@google.com>
This replaces the old key_exchange_info APIs and does not require the
caller be aware of the mess around SSL_SESSION management. They
currently have the same bugs around renegotiation as before, but later
work to fix up SSL_SESSION tracking will fix their internals.
For consistency with the existing functions, I've kept the public API at
'curve' rather than 'group' for now. I think it's probably better to
have only one name with a single explanation in the section header
rather than half and half. (I also wouldn't be surprised if the IETF
ends up renaming 'group' again to 'key exchange' at some point. We'll
see what happens.)
Change-Id: I8e90a503bc4045d12f30835c86de64ef9f2d07c8
Reviewed-on: https://boringssl-review.googlesource.com/8565
Reviewed-by: Adam Langley <agl@google.com>
This isn't filled in on the client and Chromium no longer uses it for
plain RSA. It's redundant with existing APIs. This is part of removing
the need for callers to call SSL_get_session where possible.
SSL_get_session is ambiguous when it comes to renego. Some code wants
the current connection state which should not include the pending
handshake and some code wants the handshake scratch space which should.
Renego doesn't exist in TLS 1.3, but TLS 1.3 makes NewSessionTicket a
post-handshake message, so SSL_get_session is somewhat silly of an API
there too.
SSL_SESSION_get_key_exchange_info is a BoringSSL-only API, so we can
freely change it and replace it with APIs keyed on SSL. In doing so, I
think it is better to provide APIs like "SSL_get_dhe_group_size" and
"SSL_get_curve_id" rather than make the caller do the multi-step
SSL_get_current_cipher / SSL_CIPHER_is_ECDHE dance. To that end, RSA
key_exchange_info is pointless as it can already be determined from the
peer certificate.
Change-Id: Ie90523083d8649701c17934b7be0383502a0caa3
Reviewed-on: https://boringssl-review.googlesource.com/8564
Reviewed-by: Adam Langley <agl@google.com>
QUIC, in particular, will set min_version to TLS 1.3 and has no need to send
any legacy ciphers.
Note this requires changing some test expectations. Removing all of TLS 1.1 and
below's ciphers in TLS 1.3 has consequences for how a tripped minimum version
reads.
BUG=66
Change-Id: I695440ae78b95d9c7b5b921c3cb2eb43ea4cc50f
Reviewed-on: https://boringssl-review.googlesource.com/8514
Reviewed-by: David Benjamin <davidben@google.com>
Otherwise if the client's ClientHello logic is messed up and ServerHello is
fine, we won't notice.
Change-Id: I7f983cca45f7da1113ad4a72de1f991115e1b29a
Reviewed-on: https://boringssl-review.googlesource.com/8511
Reviewed-by: David Benjamin <davidben@google.com>
This also adds a missing check to the C half to ensure fake record types are
always correct, to keep implementations honest.
Change-Id: I1d65272e647ffa67018c721d52c639f8ba47d647
Reviewed-on: https://boringssl-review.googlesource.com/8510
Reviewed-by: Steven Valdez <svaldez@google.com>
Reviewed-by: David Benjamin <davidben@google.com>
We were missing this case. It is possible to receive an early unencrypted
ChangeCipherSpec alert in DTLS because they aren't ordered relative to the
handshake. Test this case. (ChangeCipherSpec in DTLS is kind of pointless.)
Change-Id: I84268bc1821734f606fb20bfbeda91abf372f32c
Reviewed-on: https://boringssl-review.googlesource.com/8460
Reviewed-by: Adam Langley <agl@google.com>
This is the only codepath where ssl->version can get a garbage value, which is
a little concerning. Since, in all these cases, the peer is failing to connect
and speaks so low a version we don't even accept it anymore, there is probably
not much value in letting them distinguish protocol_version from a record-layer
version number mismatch, where enforced (which will give a version-related
error anyway).
Should we get a decode_error or so just before version negotiation, we'd have
this behavior already.
Change-Id: I9b3e5685ab9c9ad32a7b7e3129363cd1d4cdaaf4
Reviewed-on: https://boringssl-review.googlesource.com/8420
Reviewed-by: Steven Valdez <svaldez@google.com>
Reviewed-by: David Benjamin <davidben@google.com>
This implements the cipher suite constraints in "fake TLS 1.3". It also makes
bssl_shim and runner enable it by default so we can start adding MaxVersion:
VersionTLS12 markers to tests as 1.2 vs. 1.3 differences begin to take effect.
Change-Id: If1caf6e43938c8d15b0a0f39f40963b8199dcef5
Reviewed-on: https://boringssl-review.googlesource.com/8340
Reviewed-by: David Benjamin <davidben@google.com>
This unifies a bunch of tests and also adds a few missing ones.
Change-Id: I91652bd010da6cdb62168ce0a3415737127e1577
Reviewed-on: https://boringssl-review.googlesource.com/8360
Reviewed-by: Nick Harper <nharper@google.com>
Reviewed-by: David Benjamin <davidben@google.com>
Both messages go between CCS and Finished. We weren't testing their relative
order and one of the state machine edges. Also test resume + NPN since that too
is a different handshake shape.
Change-Id: Iaeaf6c2c9bfd133103e2fb079d0e5a86995becfd
Reviewed-on: https://boringssl-review.googlesource.com/8196
Reviewed-by: Adam Langley <agl@google.com>
This is not very satisfactory.
Change-Id: I7e7a86f921e66f8f830c72eac084e9fea5ffd4d9
Reviewed-on: https://boringssl-review.googlesource.com/8270
Reviewed-by: David Benjamin <davidben@google.com>
By corrupting the X25519 and Newhope parts separately, the test shows
that both are in use. Possibly excessive?
Change-Id: Ieb10f46f8ba876faacdafe70c5561c50a5863153
Reviewed-on: https://boringssl-review.googlesource.com/8250
Reviewed-by: Adam Langley <agl@google.com>
There's a __pragma expression which allows this. Android builds us Windows with
MinGW for some reason, so we actually do have to tolerate non-MSVC-compatible
Windows compilers. (Clang for Windows is much more sensible than MinGW and
intentionally mimicks MSVC.)
MinGW doesn't understand MSVC's pragmas and warns a lot. #pragma warning is
safe to suppress, so wrap those to shush them. This also lets us do away with a
few ifdefs.
Change-Id: I1f5a8bec4940d4b2d947c4c1cc9341bc15ec4972
Reviewed-on: https://boringssl-review.googlesource.com/8236
Reviewed-by: Adam Langley <agl@google.com>
Change-Id: I0aaf9d926a81c3a10e70ae3ae6605d4643419f89
Reviewed-on: https://boringssl-review.googlesource.com/8210
Reviewed-by: Taylor Brandstetter <deadbeef@google.com>
Reviewed-by: David Benjamin <davidben@google.com>
It's useful, when combined with patching crypto/rand/deterministic.c in, for
debugging things. Also if we want to record fuzzer transcripts again, this
probably should be on.
Change-Id: I109cf27ebab64f01a13466f0d960def3257d8750
Reviewed-on: https://boringssl-review.googlesource.com/8192
Reviewed-by: David Benjamin <davidben@google.com>
Depending on bittedness of the runner, uint16 * uint16 can overflow an int.
There's other computations that can overflow a uint32 as well, so I just made
everything uint64 to avoid thinking about it too much.
Change-Id: Ia3c976987f39f78285c865a2d7688600d73c2514
Reviewed-on: https://boringssl-review.googlesource.com/8193
Reviewed-by: Adam Langley <agl@google.com>
-timeout collides with go test's flags.
Change-Id: Icfc954915a61f1bb4d0acc8f02ec8a482ea10158
Reviewed-on: https://boringssl-review.googlesource.com/8188
Reviewed-by: David Benjamin <davidben@google.com>
This was probably the worst offender of them all as read_bytes is the wrong
abstraction to begin with. Note this is a slight change in how processing a
record works. Rather than reading one fragment at a time, we process all
fragments in a record and return. The intent here is so that all records are
processed atomically since the connection eventually will not be able to retain
a buffer holding the record.
This loses a ton of (though not quite all yet) those a2b macros.
Change-Id: Ibe4bbcc33c496328de08d272457d2282c411b38b
Reviewed-on: https://boringssl-review.googlesource.com/8176
Reviewed-by: David Benjamin <davidben@google.com>
The two modes are quite different. One of them requires the BIO honor an
extra BIO_ctrl. Also add an explanation at the top of
addDTLSRetransmitTests for how these tests work. The description is
scattered across many different places.
BUG=63
Change-Id: Iff4cdd1fbf4f4439ae0c293f565eb6780c7c84f9
Reviewed-on: https://boringssl-review.googlesource.com/8121
Reviewed-by: David Benjamin <davidben@google.com>
This is easier to deploy, and more obvious. This commit reverts a few
pieces of e25775bc, but keeps most of it.
Change-Id: If8d657a4221c665349c06041bb12fffca1527a2c
Reviewed-on: https://boringssl-review.googlesource.com/8061
Reviewed-by: Adam Langley <agl@google.com>
Constants representing TLS 1.3 are added to allow for future work to be
flagged on TLS1_3_VERSION. To prevent BoringSSL from negotiating the
non-existent TLS 1.3 version, it is explicitly disabled using
SSL_OP_NO_TLSv1_3.
Change-Id: Ie5258a916f4c19ef21646c4073d5b4a7974d6f3f
Reviewed-on: https://boringssl-review.googlesource.com/8041
Reviewed-by: Adam Langley <agl@google.com>
GetConfigPtr was a silly name. GetTestConfig matches the type and GetTestState.
Change-Id: I9998437a7be35dbdaab6e460954acf1b95375de0
Reviewed-on: https://boringssl-review.googlesource.com/8024
Reviewed-by: Adam Langley <agl@google.com>
CECPQ1 is a new key exchange that concatenates the results of an X25519
key agreement and a NEWHOPE key agreement.
Change-Id: Ib919bdc2e1f30f28bf80c4c18f6558017ea386bb
Reviewed-on: https://boringssl-review.googlesource.com/7962
Reviewed-by: David Benjamin <davidben@google.com>
On Windows, if we write to our socket and then close it, the peer sometimes
doesn't get all the data. This was working for our shimShutsDown tests because
we send close_notify in parallel with the peer and sendAlert(alertCloseNotify)
did not internally return an error.
For convenience, sendAlert returns a local error for non-close_notify alerts.
Suppress that error to avoid the race condition. This makes it behave like the
other shimShutsDown tests.
Change-Id: Iad256e3ea5223285793991e2eba9c7d61f2e3ddf
Reviewed-on: https://boringssl-review.googlesource.com/7980
Reviewed-by: Adam Langley <agl@google.com>
Previously, SSL_ECDH_METHOD consisted of two methods: one to produce a
public key to be sent to the peer, and another to produce the shared key
upon receipt of the peer's message.
This API does not work for NEWHOPE, because the client-to-server message
cannot be produced until the server's message has been received by the
client.
Solve this by introducing a new method which consumes data from the
server key exchange message and produces data for the client key
exchange message.
Change-Id: I1ed5a2bf198ca2d2ddb6d577888c1fa2008ef99a
Reviewed-on: https://boringssl-review.googlesource.com/7961
Reviewed-by: David Benjamin <davidben@google.com>
The existing logic gets confused in a number of cases around close_notify vs.
fatal alert. SSL_shutdown, while still pushing to the error queue, will fail to
notice alerts. We also get confused if we try to send a fatal alert when we've
already sent something else.
Change-Id: I9b1d217fbf1ee8a9c59efbebba60165b7de9689e
Reviewed-on: https://boringssl-review.googlesource.com/7952
Reviewed-by: David Benjamin <davidben@google.com>
OpenSSL used to only forbid it on the server in plain PSK and allow it on the
client. Enforce it properly on both sides. My read of the rule in RFC 5246 ("A
non-anonymous server can optionally request a certificate") and in RFC 4279
("The Certificate and CertificateRequest payloads are omitted from the
response.") is that client auth happens iff we're certificate-based.
The line in RFC 4279 is under the plain PSK section, but that doesn't make a
whole lot of sense and there is only one diagram. PSK already authenticates
both sides. I think the most plausible interpretation is that this is for
certificate-based ciphers.
Change-Id: If195232c83f21e011e25318178bb45186de707e6
Reviewed-on: https://boringssl-review.googlesource.com/7942
Reviewed-by: David Benjamin <davidben@google.com>
The specification, sadly, did not say that servers MUST NOT send it, only that
they are "not expected to" do anything with the client extension. Accordingly,
we decided to tolerate this. Add a test for this so that we check this
behavior.
This test also ensures that the original session's value for it carries over.
Change-Id: I38c738f218a09367c9d8d1b0c4d68ab5cbec730e
Reviewed-on: https://boringssl-review.googlesource.com/7860
Reviewed-by: Adam Langley <agl@google.com>
This allows an application to override the default of 1 second, which
is what's instructed in RFC 6347 but is not an absolute requirement.
Change-Id: I0bbb16e31990fbcab44a29325b6ec7757d5789e5
Reviewed-on: https://boringssl-review.googlesource.com/7930
Reviewed-by: David Benjamin <davidben@google.com>
The SSL tests are fairly different from most test suites. Add some high-level
documentation so people know where to start.
Change-Id: Ie5ea108883dca82675571a3025b3fbc4b9d66da9
Reviewed-on: https://boringssl-review.googlesource.com/7890
Reviewed-by: Adam Langley <agl@google.com>
The DTLS bbio logic is rather problematic, but this shouldn't make things
worse. In the in-handshake case, the new code merges the per-message
(unchecked) BIO_flush calls into one call at the end but otherwise the BIO is
treated as is. Otherwise any behavior around non-block writes should be
preserved.
In the post-handshake case, we now install the buffer when we didn't
previously. On write error, the buffer will have garbage in it, but it will be
discarded, so that will preserve any existing retry behavior. (Arguably the
existing retry behavior is a bug, but that's another matter.)
Add a test for all this, otherwise it is sure to regress. Testing for
record-packing is a little fuzzy, but we can assert ChangeCipherSpec always
shares a record with something.
BUG=57
Change-Id: I8603f20811d502c71ded2943b0e72a8bdc4e46f2
Reviewed-on: https://boringssl-review.googlesource.com/7871
Reviewed-by: Adam Langley <agl@google.com>
This is just kind of a silly thing to do. NSS doesn't allow them either. Fatal
alerts would kill the connection regardless and warning alerts are useless. We
previously stopped accepting fragmented alerts but still allowed them doubled
up.
This is in preparation for pulling the shared alert processing code between TLS
and DTLS out of read_bytes into some common place.
Change-Id: Idbef04e39ad135f9601f5686d41f54531981e0cf
Reviewed-on: https://boringssl-review.googlesource.com/7451
Reviewed-by: Emily Stark (Dunn) <estark@google.com>
Reviewed-by: David Benjamin <davidben@google.com>
A lot of consumers of obj.h only want the NID values. Others didn't need
it at all. This also removes some OBJ_nid2sn and OBJ_nid2ln calls in EVP
error paths which isn't worth pulling a large table in for.
BUG=chromium:499653
Change-Id: Id6dff578f993012e35b740a13b8e4f9c2edc0744
Reviewed-on: https://boringssl-review.googlesource.com/7563
Reviewed-by: David Benjamin <davidben@google.com>
These only affect the tests.
Change-Id: If22d047dc98023501c771787b485276ece92d4a2
Reviewed-on: https://boringssl-review.googlesource.com/7573
Reviewed-by: Steven Valdez <svaldez@google.com>
Reviewed-by: David Benjamin <davidben@google.com>
Otherwise it's confusing if you mistype the test name.
Change-Id: Idf32081958f85f3b5aeb8993a07f6975c27644f8
Reviewed-on: https://boringssl-review.googlesource.com/7500
Reviewed-by: Emily Stark (Dunn) <estark@google.com>
Reviewed-by: David Benjamin <davidben@google.com>
Align all unexpected messages on SSL_R_UNEXPECTED_MESSAGE. Make the SSL 3.0
case the exceptional case. In doing so, make sure the SSL 3.0
SSL_VERIFY_FAIL_IF_NO_PEER_CERT case has its own test as that's a different
handshake shape.
Change-Id: I1a539165093fbdf33e2c1b25142f058aa1a71d83
Reviewed-on: https://boringssl-review.googlesource.com/7421
Reviewed-by: Steven Valdez <svaldez@google.com>
Reviewed-by: David Benjamin <davidben@google.com>
If we're doing substring matching, we should at least include the delimiter.
Change-Id: I98bee568140d0304bbb6a2788333dbfca044114c
Reviewed-on: https://boringssl-review.googlesource.com/7420
Reviewed-by: Steven Valdez <svaldez@google.com>
Reviewed-by: David Benjamin <davidben@google.com>
In TLS, you never skip the Certificate message. It may be empty, but its
presence is determined by CertificateRequest. (This is sensible.)
In SSL 3.0, the client omits the Certificate message. This means you need to
probe and may receive either Certificate or ClientKeyExchange (thankfully,
ClientKeyExchange is not optional, or we'd have to probe at ChangeCipherSpec).
We didn't have test coverage for this, despite some of this logic being a
little subtle asynchronously. Fix this.
Change-Id: I149490ae5506f02fa0136cb41f8fea381637bf45
Reviewed-on: https://boringssl-review.googlesource.com/7419
Reviewed-by: Steven Valdez <svaldez@google.com>
Reviewed-by: David Benjamin <davidben@google.com>
Also add no-certificate cases to the state machine coverage tests.
Change-Id: I88a80df6f3ea69aabc978dd356abcb9e309e156f
Reviewed-on: https://boringssl-review.googlesource.com/7417
Reviewed-by: Steven Valdez <svaldez@google.com>
Reviewed-by: David Benjamin <davidben@google.com>
If a Read or Write blocks for too long, time out the operation. Otherwise, some
kinds of test failures result in hangs, which prevent the test harness from
progressing. (Notably, OpenSSL currently has a lot of those failure modes and
upstream expressed interest in being able to run the tests to completion.)
Go's APIs want you to send an absolute timeout, to avoid problems when a Read
is split into lots of little Reads. But we actively want the timer to reset in
that case, so this needs a trivial adapter.
The default timeout is set at 15 seconds for now. If this becomes a problem, we
can extend it or build a more robust deadlock detector given an out-of-band
channel (shim tells runner when it's waiting on data, abort if we're also
waiting on data at the same time). But I don't think we'll need that
complexity. 15 seconds appears fine for both valgrind and running tests on a
Nexus 4.
BUG=460189
Change-Id: I6463fd36058427d883b526044da1bbefba851785
Reviewed-on: https://boringssl-review.googlesource.com/7380
Reviewed-by: Steven Valdez <svaldez@google.com>
Reviewed-by: David Benjamin <davidben@google.com>
I went with NID_x25519 to match NID_sha1 and friends in being lowercase.
However, upstream seems to have since chosen NID_X25519. Match their
name.
Change-Id: Icc7b183a2e2dfbe42c88e08e538fcbd242478ac3
Reviewed-on: https://boringssl-review.googlesource.com/7331
Reviewed-by: Steven Valdez <svaldez@google.com>
Reviewed-by: David Benjamin <davidben@google.com>
Change-Id: I9540c931b6cdd4d65fa9ebfc52e1770d2174abd2
Reviewed-on: https://boringssl-review.googlesource.com/7330
Reviewed-by: Steven Valdez <svaldez@google.com>
Reviewed-by: David Benjamin <davidben@google.com>
This can be used to get some initial corpus for fuzzing.
Change-Id: Ifcd365995b54d202c4a2674f49e7b28515f36025
Reviewed-on: https://boringssl-review.googlesource.com/7289
Reviewed-by: Adam Langley <agl@google.com>
It's useful to make sure our fuzzer mode works. Not all tests pass, but most
do. (Notably the negative tests for everything we've disabled don't work.) We
can also use then use runner to record fuzzer-mode transcripts with the ciphers
correctly nulled.
Change-Id: Ie41230d654970ce6cf612c0a9d3adf01005522c6
Reviewed-on: https://boringssl-review.googlesource.com/7288
Reviewed-by: Adam Langley <agl@google.com>
Both sides' signature and Finished checks still occur, but the results
are ignored. Also, all ciphers behave like the NULL cipher.
Conveniently, this isn't that much code since all ciphers and their size
computations funnel into SSL_AEAD_CTX.
This does carry some risk that we'll mess up this code. Up until now, we've
tried to avoid test-only changes to the SSL stack.
There is little risk that anyone will ship a BORINGSSL_UNSAFE_FUZZER_MODE build
for anything since it doesn't interop anyway. There is some risk that we'll end
up messing up the disableable checks. However, both skipped checks have
negative tests in runner (see tests that set InvalidSKXSignature and
BadFinished). For good measure, I've added a server variant of the existing
BadFinished test to this CL, although they hit the same code.
Change-Id: I37f6b4d62b43bc08fab7411965589b423d86f4b8
Reviewed-on: https://boringssl-review.googlesource.com/7287
Reviewed-by: Adam Langley <agl@google.com>
Found by libFuzzer combined with some experimental unsafe-fuzzer-mode patches
(to be uploaded once I've cleaned them up a bit) to disable all those pesky
cryptographic checks in the protocol.
Change-Id: I9153164fa56a0c2262c4740a3236c2b49a596b1b
Reviewed-on: https://boringssl-review.googlesource.com/7282
Reviewed-by: Adam Langley <agl@google.com>
If LeakSanitizer fires something on a test that's expected to fail, runner will
swallow it. Have stderr output always end in a "--- DONE ---" marker and treat
all output following that as a test failure.
Change-Id: Ia8fd9dfcaf48dd23972ab8f906d240bcb6badfe2
Reviewed-on: https://boringssl-review.googlesource.com/7281
Reviewed-by: Adam Langley <agl@google.com>
Otherwise it still thinks this is an RFC 5114 prime and kicks in the (now
incorrect) validity check.
Change-Id: Ie78514211927f1f2d2549958621cb7896f68b5ce
Reviewed-on: https://boringssl-review.googlesource.com/7050
Reviewed-by: Adam Langley <agl@google.com>
Take the mappings for MD5 and SHA-224 values out of the code altogether. This
aligns with the current TLS 1.3 draft.
For MD5, this is a no-op. It is not currently possible to configure accepted
signature algorithms, MD5 wasn't in the hardcoded list, and we already had a
test ensuring we enforced our preferences correctly. MD5 also wasn't in the
default list of hashes our keys could sign and no one overrides it with a
different hash.
For SHA-224, this is not quite a no-op. The hardcoded accepted signature
algorithms list included SHA-224, so this will break servers relying on that.
However, Chrome's metrics have zero data points of servers picking SHA-224 and
no other major browser includes it. Thus that should be safe.
SHA-224 was also in the default list of hashes we are willing to sign. For
client certificates, Chromium's abstractions already did not allow signing
SHA-224, so this is a no-op there. For servers, this will break any clients
which only accept SHA-224. But no major browsers do this and I am not aware of
any client implementation which does such ridiculous thing.
(SHA-1's still in there. Getting rid of that one is going to take more effort.)
Change-Id: I6a765fdeea9e19348e409d58a0eac770b318e599
Reviewed-on: https://boringssl-review.googlesource.com/7020
Reviewed-by: Adam Langley <agl@google.com>
For TLS, this machinery only exists to swallow no_certificate alerts
which only get sent in an SSL 3.0 codepath anyway. It's much less a
no-op for SSL 3.0 which, strictly speaking, has only a subset of TLS's
alerts.
This gets messy around version negotiation because of the complex
relationship between enc_method, have_version, and version which all get
set at different times. Given that SSL 3.0 is nearly dead and all these
alerts are fatal to the connection anyway, this doesn't seem worth
carrying around. (It doesn't work very well anyway. An SSLv3-only server
may still send a record_overflow alert before version negotiation.)
This removes the last place enc_method is accessed prior to version
negotiation.
Change-Id: I79a704259fca69e4df76bd5a6846c9373f46f5a9
Reviewed-on: https://boringssl-review.googlesource.com/6843
Reviewed-by: Adam Langley <alangley@gmail.com>
We haven't had problems with this, but make sure it stays that way.
Bogus signature algorithms are already covered.
Change-Id: I085350d89d79741dba3f30fc7c9f92de16bf242a
Reviewed-on: https://boringssl-review.googlesource.com/6910
Reviewed-by: David Benjamin <davidben@google.com>
This is a minor regression from
https://boringssl-review.googlesource.com/5235.
If the client, for whatever reason, had an ID-based session but also
supports tickets, it will send non-empty ID + empty ticket extension.
If the ticket extension is non-empty, then the ID is not an ID but a
dummy signaling value, so 5235 avoided looking it up. But if it is
present and empty, the ID is still an ID and should be looked up.
This shouldn't have any practical consequences, except if a server
switched from not supporting tickets and then started supporting it,
while keeping the session cache fixed.
Add a test for this case, and tighten up existing ID vs ticket tests so
they fail if we resume with the wrong type.
Change-Id: Id4d08cd809af00af30a2b67fe3a971078e404c75
Reviewed-on: https://boringssl-review.googlesource.com/6554
Reviewed-by: Adam Langley <alangley@gmail.com>
We don't actually have an API to let you know if the value is legal to
interpret as a curve ID. (This was kind of a poor API. Oh well.) Also add tests
for key_exchange_info. I've intentionally left server-side plain RSA missing
for now because the SSL_PRIVATE_KEY_METHOD abstraction only gives you bytes and
it's probably better to tweak this API instead.
(key_exchange_info also wasn't populated on the server, though due to a
rebasing error, that fix ended up in the parent CL. Oh well.)
Change-Id: I74a322c8ad03f25b02059da7568c9e1a78419069
Reviewed-on: https://boringssl-review.googlesource.com/6783
Reviewed-by: Adam Langley <agl@google.com>
The new curve is not enabled by default.
As EC_GROUP/EC_POINT is a bit too complex for X25519, this introduces an
SSL_ECDH_METHOD abstraction which wraps just the raw ECDH operation. It
also tidies up some of the curve code which kept converting back and
force between NIDs and curve IDs. Now everything transits as curve IDs
except for API entry points (SSL_set1_curves) which take NIDs. Those
convert immediately and act on curve IDs from then on.
Note that, like the Go implementation, this slightly tweaks the order of
operations. The client sees the server public key before sending its
own. To keep the abstraction simple, SSL_ECDH_METHOD expects to
generate a keypair before consuming the peer's public key. Instead, the
client handshake stashes the serialized peer public value and defers
parsing it until it comes time to send ClientKeyExchange. (This is
analogous to what it was doing before where it stashed the parsed peer
public value instead.)
It still uses TLS 1.2 terminology everywhere, but this abstraction should also
be compatible with TLS 1.3 which unifies (EC)DH-style key exchanges.
(Accordingly, this abstraction intentionally does not handle parsing the
ClientKeyExchange/ServerKeyExchange framing or attempt to handle asynchronous
plain RSA or the authentication bits.)
BUG=571231
Change-Id: Iba09dddee5bcdfeb2b70185308e8ab0632717932
Reviewed-on: https://boringssl-review.googlesource.com/6780
Reviewed-by: Adam Langley <agl@google.com>
This injects an interface to abstract between elliptic.Curve and a
byte-oriented curve25519. The C implementation will follow a similar
strategy.
Note that this slightly tweaks the order of operations. The client sees
the server public key before sending its own. To keep the abstraction
simple, ecdhCurve expects to generate a keypair before consuming the
peer's public key. Instead, the client handshake stashes the serialized
peer public value and defers parsing it until it comes time to send
ClientKeyExchange. (This is analogous to what it was doing before where
it stashed the parsed peer public value instead.)
BUG=571231
Change-Id: I771bb9aee0dd6903d395c84ec4f2dd7b3e366c75
Reviewed-on: https://boringssl-review.googlesource.com/6777
Reviewed-by: Adam Langley <agl@google.com>
Hopefully this can be replaced with a standard library version later.
BUG=571231
Change-Id: I61ae1d9d057c6d9e1b92128042109758beccc7ff
Reviewed-on: https://boringssl-review.googlesource.com/6776
Reviewed-by: Adam Langley <agl@google.com>
We don't live in a workspace, but relative import paths exist, so we
don't have to modify the modules we bundle to avoid naming collisions.
Change-Id: Ie7c70dbc4bb0485421814d40b6a6bd5f140e1d29
Reviewed-on: https://boringssl-review.googlesource.com/6781
Reviewed-by: Adam Langley <agl@google.com>
It already wasn't in the default list and no one enables it. Remove it
altogether. (It's also gone from the current TLS 1.3 draft.)
Change-Id: I143d07d390d186252204df6bdb8ffd22649f80e3
Reviewed-on: https://boringssl-review.googlesource.com/6775
Reviewed-by: Adam Langley <agl@google.com>
Apple these days ships lldb without gdb. Teach runner how to launch it
too.
Change-Id: I25f845f84f1c87872a9e3bc4b7fe3e7344e8c1f7
Reviewed-on: https://boringssl-review.googlesource.com/6769
Reviewed-by: Adam Langley <agl@google.com>
Only ECDHE-based ciphers are implemented. To ease the transition, the
pre-standard cipher shares a name with the standard one. The cipher rule parser
is hacked up to match the name to both ciphers. From the perspective of the
cipher suite configuration language, there is only one cipher.
This does mean it is impossible to disable the old variant without a code
change, but this situation will be very short-lived, so this is fine.
Also take this opportunity to make the CK and TXT names align with convention.
Change-Id: Ie819819c55bce8ff58e533f1dbc8bef5af955c21
Reviewed-on: https://boringssl-review.googlesource.com/6686
Reviewed-by: Adam Langley <agl@google.com>
This will be used to test the C implementation against.
Change-Id: I2d396d27630937ea610144e381518eae76f78dab
Reviewed-on: https://boringssl-review.googlesource.com/6685
Reviewed-by: Adam Langley <agl@google.com>
In preparation for a Go implementation of the new TLS ciphers to test
against, implement the AEAD primitive.
Change-Id: I69b5b51257c3de16bdd36912ed2bc9d91ac853c8
Reviewed-on: https://boringssl-review.googlesource.com/6684
Reviewed-by: Adam Langley <agl@google.com>
In preparation for implementing the RFC 7539 variant to test against.
Change-Id: I0ce5e856906e00925ad1d849017f9e7fda087a8e
Reviewed-on: https://boringssl-review.googlesource.com/6683
Reviewed-by: Adam Langley <agl@google.com>
This uses ssl3_read_bytes for now. We still need to dismantle that
function and then invert the handshake state machine, but this gets
things closer to the right shape as an intermediate step and is a large
chunk in itself. It simplifies a lot of the CCS/handshake
synchronization as a lot of the invariants much more clearly follow from
the handshake itself.
Tests need to be adjusted since this changes some error codes. Now all
the CCS/Handshake checks fall through to the usual
SSL_R_UNEXPECTED_RECORD codepath. Most of what used to be a special-case
falls out naturally. (If half of Finished was in the same record as the
pre-CCS message, that part of the handshake record would have been left
unconsumed, so read_change_cipher_spec would have noticed, just like
read_app_data would have noticed.)
Change-Id: I15c7501afe523d5062f0e24a3b65f053008d87be
Reviewed-on: https://boringssl-review.googlesource.com/6642
Reviewed-by: Adam Langley <agl@google.com>
Sometimes BadRSAClientKeyExchange-1 fails with DATA_TOO_LARGE_FOR_MODULUS if
the corruption brings the ciphertext above the RSA modulus. Ensure this does
not happen.
Change-Id: I0d8ea6887dfcab946fdf5d38f5b196f5a927c4a9
Reviewed-on: https://boringssl-review.googlesource.com/6731
Reviewed-by: Adam Langley <agl@google.com>
Cover not just the wrong version, but also other mistakes.
Change-Id: I46f05a9a37b7e325adc19084d315a415777d3a46
Reviewed-on: https://boringssl-review.googlesource.com/6610
Reviewed-by: Adam Langley <agl@google.com>
I don't think we're ever going to manage to enforce this, and it doesn't
seem worth the trouble. We don't support application protocols which use
renegotiation outside of the HTTP/1.1 mid-stream client auth hack.
There, it's on the server to reject legacy renegotiations.
This removes the last of SSL_OP_ALL.
Change-Id: I996fdeaabf175b6facb4f687436549c0d3bb0042
Reviewed-on: https://boringssl-review.googlesource.com/6580
Reviewed-by: Adam Langley <agl@google.com>
RFC 5746 forbids a server from downgrading or upgrading
renegotiation_info support. Even with SSL_OP_LEGACY_SERVER_CONNECT set
(the default), we can still enforce a few things.
I do not believe this has practical consequences. The attack variant
where the server half is prefixed does not involve a renegotiation on
the client. The converse where the client sees the renegotiation and
prefix does, but we only support renego for the mid-stream HTTP/1.1
client auth hack, which doesn't do this. (And with triple-handshake,
HTTPS clients should be requiring the certificate be unchanged across
renego which makes this moot.)
Ultimately, an application which makes the mistake of using
renegotiation needs to be aware of what exactly that means and how to
handle connection state changing mid-stream. We make renego opt-in now,
so this is a tenable requirement.
(Also the legacy -> secure direction would have been caught by the
server anyway since we send a non-empty RI extension.)
Change-Id: I915965c342f8a9cf3a4b6b32f0a87a00c3df3559
Reviewed-on: https://boringssl-review.googlesource.com/6559
Reviewed-by: Adam Langley <agl@google.com>