See upstream's 9f0b86c68bb96d49301bbd6473c8235ca05ca06b. Generated by
using upstream's script in 5a3ce86e21715a683ff0d32421ed5c6d5e84234d and
then manually throwing out the false positives. (We converted a bunch of
stuff already in 91157550061d5d794898fe47b95384a7ba5f7b9d.)
This may require some wrestling with depot_tools to land in Chromium due
to Rietveld's encoding bugs, but hopefully that will avoid future
problems; Rietveld breaks if either old or new file is Latin-1.
Change-Id: I26dcb20c7377f92a0c843ef5d74d440a82ea8ceb
Reviewed-on: https://boringssl-review.googlesource.com/5483
Reviewed-by: Adam Langley <agl@google.com>
This facilitates "universal" builds, ones that target multiple
architectures, e.g. ARMv5 through ARMv7.
(Imported from upstream's c1669e1c205dc8e695fb0c10a655f434e758b9f7)
This is a change from a while ago which was a source of divergence between our
perlasm and upstream's. This change in upstream came with the following comment
in Configure:
Note that -march is not among compiler options in below linux-armv4
target line. Not specifying one is intentional to give you choice to:
a) rely on your compiler default by not specifying one;
b) specify your target platform explicitly for optimal performance,
e.g. -march=armv6 or -march=armv7-a;
c) build "universal" binary that targets *range* of platforms by
specifying minimum and maximum supported architecture;
As for c) option. It actually makes no sense to specify maximum to be
less than ARMv7, because it's the least requirement for run-time
switch between platform-specific code paths. And without run-time
switch performance would be equivalent to one for minimum. Secondly,
there are some natural limitations that you'd have to accept and
respect. Most notably you can *not* build "universal" binary for
big-endian platform. This is because ARMv7 processor always picks
instructions in little-endian order. Another similar limitation is
that -mthumb can't "cross" -march=armv6t2 boundary, because that's
where it became Thumb-2. Well, this limitation is a bit artificial,
because it's not really impossible, but it's deemed too tricky to
support. And of course you have to be sure that your binutils are
actually up to the task of handling maximum target platform.
Change-Id: Ie5f674d603393f0a1354a0d0973987484a4a650c
Reviewed-on: https://boringssl-review.googlesource.com/4488
Reviewed-by: Adam Langley <agl@google.com>
Pointer out and suggested by: Ard Biesheuvel.
(Imported from upstream's 5dcf70a1c57c2019bfad640fe14fd4a73212860a)
This is from a while ago, but it's one source of divergence between our copy of
these files and master's.
Change-Id: I6525a27f25eb86a92420c32996af47ecc42ee020
Reviewed-on: https://boringssl-review.googlesource.com/4487
Reviewed-by: Adam Langley <agl@google.com>
Clang's integrated as accepts unified ARM syntax only. This change
updates the GHASH ARM asm to use that syntax and thus be compatible.
Patch from Nico Weber.
https://code.google.com/p/chromium/issues/detail?id=124610
Change-Id: Ie6f3de4e37286f0af39196fad33905f7dee7402e
This change marks public symbols as dynamically exported. This means
that it becomes viable to build a shared library of libcrypto and libssl
with -fvisibility=hidden.
On Windows, one not only needs to mark functions for export in a
component, but also for import when using them from a different
component. Because of this we have to build with
|BORINGSSL_IMPLEMENTATION| defined when building the code. Other
components, when including our headers, won't have that defined and then
the |OPENSSL_EXPORT| tag becomes an import tag instead. See the #defines
in base.h
In the asm code, symbols are now hidden by default and those that need
to be exported are wrapped by a C function.
In order to support Chromium, a couple of libssl functions were moved to
ssl.h from ssl_locl.h: ssl_get_new_session and ssl_update_cache.
Change-Id: Ib4b76e2f1983ee066e7806c24721e8626d08a261
Reviewed-on: https://boringssl-review.googlesource.com/1350
Reviewed-by: Adam Langley <agl@google.com>
Câmara, D.; Gouvêa, C. P. L.; López, J. & Dahab, R.: Fast Software
Polynomial Multiplication on ARM Processors using the NEON Engine.
http://conradoplg.cryptoland.net/files/2010/12/mocrysen13.pdf
(Imported from upstream's 0fb3d5b4fdc76b8d4a4700d03480cda135c6c117)
Initial fork from f2d678e6e89b6508147086610e985d4e8416e867 (1.0.2 beta).
(This change contains substantial changes from the original and
effectively starts a new history.)